期刊文献+

基于NLS的多机只测角误差配准算法 被引量:4

NLS-based Registration Algorithm for Bearings-Only Location by Multiple Airborne Observers
在线阅读 下载PDF
导出
摘要 多机无源融合定位中的误差配准是目前多传感器误差配中的难点之一。当无源传感器获得的观测量存在系统误差却不进行配准时,多机融合定位的效果将受到严重影响。针对这一情况,在多机只测角无源定位问题中提出了一种基于非线性最小二乘(NLS)的误差配准算法。该算法将多机只测角误差配准问题转换为非线性最小二乘估计问题,并采用高斯-牛顿法求解,即先将非线性量测方程线性化并采用加权最小二乘进行估计,然后进行迭代直至收敛到最优估计值。仿真结果表明,与EKF配准算法相比,当观测时间足够长时,本文提出的NLS误差配准算法的定位误差可以接近克拉美罗限(CRLB),并且对系统误差的估计精度非常高。 Registration for passive sensors on multiple airborne observers is one of difficult multi-sensor registration problems.The accuracy of location will be severely affected when the measurements taken by passive sensors consist of systematic biases without registration.A registration algorithm based on nonlinear least-squares(NLS) for bearings-only location by multiple airborne observers is proposed.The algorithm regards registration for multiple airborne bearings-only observers as an NLS problem,and solves it by Gauss-Newton Method.Firstly,linearize the measurement equations and estimate the parameters using the general least-squares method.Then execute the iterative procedure until the estimated parameters converge to optimal estimations.Simulation results show that,given enough measurements,the NLS-based registration algorithm proposed here can effectively estimate the systemic biases as well as the position of the target with the location error reaching the Cramer-Rao bound(CRLB) when compared with EKF-based registration algorithm.
出处 《信号处理》 CSCD 北大核心 2012年第4期533-538,共6页 Journal of Signal Processing
基金 航空科学基金(20105584004)
关键词 无源定位 误差配准 非线性最小二乘 克拉美罗限 passive location registration nonlinear least-squares the Cramer-Rao bound
  • 相关文献

参考文献13

二级参考文献42

  • 1陈玲,李少洪.可消除定位模糊的无源时差定位算法[J].北京航空航天大学学报,2005,31(1):89-93. 被引量:19
  • 2高海舰,李陟.多站组网时差测量定位精度算法研究[J].系统工程与电子技术,2005,27(4):578-581. 被引量:12
  • 3董云龙,何友,王国宏.一种新的雷达组网实时误差配准算法[J].南京航空航天大学学报,2005,37(3):330-334. 被引量:17
  • 4王忆锋,张海联,李茜.多传感器数据融合技术[J].红外技术,1997,19(2):34-36. 被引量:25
  • 5周宏仁 敬忠良 等.机动目标跟踪[M].北京:国防工业出版社,1994..
  • 6高立平.多传感器信号检测与目标跟踪理论及应用研究[M].西安:西北工业大学出版社,1999..
  • 7周一宇 卢起中 等.多站无源定位及其信号处理技术[A]..雷达无源定位跟踪技术研讨会论文集[C].北京,2001.53—59.
  • 8[1]Freedman D D,Smyton P A.Overview of data fusion activities[A]. in Proc Amer Contr Conf[C]. San Francisco:CA, 1993.128-130.
  • 9[2]Thomopoulos S C A,Okello N N.Distributed and centralized multisensor detection with misaligned sensors[J].Inform Sci,1994,77(4): 293-323.
  • 10Kutluyll Dogancay. On the Bias of Linear Least Squares Algorithm for Passive Target Localization[J]. Signal Processing, 2004,84(3):475-486.

共引文献57

同被引文献30

  • 1徐本连,王执铨.双基阵纯方位目标的可观测性研究及跟踪性能改进[J].控制与决策,2005,20(9):1017-1021. 被引量:2
  • 2董云龙,何友,王国宏,于占仁,王瑞友.基于ECEF的广义最小二乘误差配准技术[J].航空学报,2006,27(3):463-467. 被引量:34
  • 3WANG Ding ZHANG Li WU Ying.Constrained total least squares algorithm for passive location based on bearing-only measurements[J].Science in China(Series F),2007,50(4):576-586. 被引量:27
  • 4赵杰,江晶,盖旭刚.多无源传感器的在线配准[J].传感技术学报,2007,20(8):1894-1898. 被引量:4
  • 5Doganqay K. UAV path planning for passive emitter lo- calization [ J ]. IEEE Transactions on Aerospace and Electronic systems, 2012, 48 ( 2 ) : 1150-1166.
  • 6Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with ap- plications to tracking and navigation: theory algorithms and software[M]. New York, John Wiley & Sons Inc, 2001.
  • 7Feng D W, Li T, Huang Z T. Square-root second-order extended Kalman filter and its application in target motion analysis[J]. IET Radar Sonar & Navigation, 2010, 4 (3) : 329-335.
  • 8Zhan R H, Wan J W. Iterated Unscented Kalman Filter for Passive Target Tracking[ J]. IEEE Transactions on Aero- space and Electronic Systems, 2007, 43 (3) : 1155-1163.
  • 9Duntk J,Simandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter [ J ]. IEEE Transactions on Automatic Control, 2012, 57 (9) : 2411-2416.
  • 10Arasaratnam I, Haykin S. Cubature Kalman filters[ J]. IEEE Transactions on Automatic Control, 2009, 54 (6) :1254-1269.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部