期刊文献+

一种新的混合粒子群算法求解置换流水车间调度问题 被引量:8

New hybrid particle swarm optimization algorithm for permutation Flow-Shop scheduling problem
在线阅读 下载PDF
导出
摘要 针对粒子群算法易早熟的缺点,提出了一种结合迭代贪婪(IG)算法的混合粒子群算法。算法通过连续几代粒子个体极值和全局极值的变化判断粒子的状态,在发现粒子出现停滞或者粒子群出现早熟后,及时利用IG算法的毁坏操作和构造操作对停滞粒子和全局最优粒子进行变异,变异后利用模拟退火思想概率接收新值。全局最优粒子的改变会引导粒子跳出局部极值的约束,增加粒子的多样性,从而克服粒子群的早熟现象。同时,为了使算法能更快找到或逼近最优解,采用了循环迭代策略,在阶段优化结果的基础上,周而复始循环迭代进行求解。将提出的混合粒子群算法应用于置换流水车间调度问题,并在问题求解时与几个具有代表性的算法进行了比较。结果表明,提出的算法能够克服粒子群早熟,在求解质量方面优于其他算法。 For the problem that the PSO is easy to be trapped in local optimal,this paper put forward a hybrid PSO algorithm which combined the IG algorithm.The algorithm judged the particles' status by the change of particles' individual and global best value in continuous generations,and used destruction and construction operation of IG algorithm to mutate the relating particle and the global best position after discovering that the particle was at a standstill or the particle swarm was trapped in local optimal.The new particles being mutated were accepted according to the simulated annealing theory.The mutation of global best particle could guide the particle swarm to escape from the local best value's limit and increase the diversity of particles,which avoided the particle's premature stagnation.Simultaneously,the algorithm adopted cycle iterative method in order to get or approach the best result quickly.It searched the best solution step by step on the basis of stage optimization.The paper applied the hybrid PSO algorithm to the permutation Flow-Shop scheduling problem,and compared it with the other representative algorithm.The result shows that the hybrid PSO algorithm can avoid the particle's premature stagnation effectively and the algorithm is better than other algorithms in the quality of searching the best solution.
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2028-2030,2034,共4页 Application Research of Computers
基金 国家"十一五"科技支撑计划资助项目(115-04-YK-048)
关键词 粒子群算法 迭代贪婪算法 早熟收敛 流水车间调度 particle swarm optimization(PSO) iterated greedy(IG) premature stagnation Flow-Shop scheduling
  • 相关文献

参考文献15

  • 1GAREY M R, JOHNSON D S, SETHI R. The complexity of flow shop and job shop scheduling[ J]. Mathematics of Operations Research, 1976,1 (2) :117-129.
  • 2EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory [ C ]//Proc of the 6th International Symposium on Micro Machine and Human Science. 1995:39-43.
  • 3高尚,杨静宇.求解流水作业调度问题的混合粒子群优化算法[C].中国控制与决策学术年会论文集,2006:1006-1008.
  • 4田野,刘大有.求解流水车间调度问题的混合粒子群算法[J].电子学报,2011,39(5):1087-1093. 被引量:18
  • 5宁正元,林大辉,李丽珊,钟一文.置换流水车间调度问题的离散粒子群优化算法[J].集美大学学报(自然科学版),2008,13(2):97-101. 被引量:3
  • 6刘志雄,严新平,赵润军.置换流水车间调度粒子群算法与参数设置分析[J].武汉理工大学学报(交通科学与工程版),2010,34(6):1129-1132. 被引量:2
  • 7SUN Kai, YANG Gen-ke. An effective hybrid optimization algorithm for the flow shop scheduling problem [ C ]//Proc of IEEE International Conference on Information Acquisition. 2006 : 1234-1238.
  • 8LIU Hong-cheng, GAO Liang, PAN Quan-ke. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem [ J ]. Expert Systems with Applications, 2011,38 ( 4 ) : 4348 - 4360.
  • 9RIOZ R, STUTZLE T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem [ J ]. European Journal of Operational Research, 2007, 177 ( 3 ) : 2033- 2049.
  • 10RIBAS I, COMPANYS R, TORT-MARTORELL X. An iteratedgreedy algorithm for the flowshop, scheduling problem with blocking [ J]. Omega,2011,39 ( 3 ) :293-301.

二级参考文献47

  • 1钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,26(6):88-94. 被引量:48
  • 2周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 3GAREY E L, JOHNSON D S, SETHI R. The complexity of flow-shop and Job Shop scheduling[J]. Mathematics of Operations Research,1976,1(1):117-129.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization [C]//Proceedings of International Conference on Neural Networks. Piscataway, N.J. ,USA:IEEE Press,1995:1942-1948.
  • 5KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of 1997 Conference on Systems, Man, and Cybernetics. Washington, D. C. , USA:IEEE, 1997,5:4104-4108.
  • 6LIAO C J, TSENG C T, LUARN P. A discrete version of particle swarm optimization for flowshop scheduling problems[J]. Computers & Operations Research, 2007,34 (10) : 3099-3111.
  • 7TASGETREN M F, SEVKLI M, LIANG Y C, et al. Particle swarm optimization algorithm for single machine total weighted tardiness problem[C]//Proceedings of IEEE Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2004,2 : 1412-1419.
  • 8TASGETREN M F swarm optimization SEVKLI M, LIANG Y C, et al. Particle algorithm for permutation flowshop sequencing problem [J]. Lecture Notes in Computer Science, 2004,3172:382-389.
  • 9LIU Bo, WANG Ling, JIN Yihui. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers[J]. Computers & Operations Research,2008,35(9) :2791-2806.
  • 10LIU Bo, WANG Ling, JIN Yihui. An effective PSO-based memetic algorithm for flow shop scheduling[J]. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics, 2007,37 (1) : 18-27.

共引文献33

同被引文献69

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部