期刊文献+

Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico

Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico
原文传递
导出
摘要 Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating Earth's temperature. This work estimates AGB using both chlorophyll (red, near infrared) and moisture (middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer (MODIS) and MOD44B vegetation continuous fields (VCF) data. The study area is located in San Luis Potosi, Mexico, a region that comprises a part of the upper limit of the intertropical zone. AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature. Linear and nonlinear (expo- nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables. Highly-significant correlations (p = 0.01 ) were found between all the explaining variables tested. NDVI62, linked to chlorophyll content and moisture stress, showed the highest correlation. The best model (nonlinear) showed an index of fit (Pseudo - r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables. Validation correlation coefficients were similar for both models: linear (r = 0.87**) and nonlinear (r = 0.86**). Spatially-explicit estimation of aboveground biomass (AGB) plays an important role to generate action policies focused in climate change mitigation, since carbon (C) retained in the biomass is vital for regulating Earth's temperature. This work estimates AGB using both chlorophyll (red, near infrared) and moisture (middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer (MODIS) and MOD44B vegetation continuous fields (VCF) data. The study area is located in San Luis Potosi, Mexico, a region that comprises a part of the upper limit of the intertropical zone. AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature. Linear and nonlinear (expo- nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables. Highly-significant correlations (p = 0.01 ) were found between all the explaining variables tested. NDVI62, linked to chlorophyll content and moisture stress, showed the highest correlation. The best model (nonlinear) showed an index of fit (Pseudo - r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables. Validation correlation coefficients were similar for both models: linear (r = 0.87**) and nonlinear (r = 0.86**).
出处 《Journal of Geographical Sciences》 SCIE CSCD 2012年第4期669-680,共12页 地理学报(英文版)
关键词 MODIS MCD43A4 MOD44B forest inventory regression MODIS MCD43A4 MOD44B forest inventory regression
  • 相关文献

参考文献1

二级参考文献5

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部