期刊文献+

不同吹风比下双出口孔射流气膜冷却数值模拟计算 被引量:3

Numerical Simulation of Film Cooling Effectiveness with Double Outlet Hole Injection at Different Blowing Ratios
在线阅读 下载PDF
导出
摘要 为了获得吹风比对新型气膜冷却孔冷却效率的影响规律,利用Fluent软件求解Navier-Stokes方程,对吹风比分别为0.5、1.0、1.5和2.0时单入口-双出口孔射流冷却效率进行了数值模拟计算,得到了不同吹风比下的流场和冷却效率.结果表明:吹风比对冷却效率有很大影响;随着吹风比的提高,不同次孔方位角下的冷却效率变化规律也不相同;当次孔方位角γ=30°时,吹风比为1.0时的冷却效率最高;当γ=45°时,冷却效率随着吹风比提高而提高;当γ=60°时,冷却效率随着吹风比提高而降低;在研究高吹风比对气膜冷却效率的影响时,γ=45°最佳. To study the influence of blowing ratio on film cooling effectiveness with injection through a novel film cooling hole,a numerical simulation was carried out on the cooling effectiveness with one-inlet double-outlet hole injection by the use of Fluent software to solve Navier-Stokes equation at blowing ratios of respectively 0.5,1.0,1.5 and 2.0,during which various flow fields and cooling effectiveness were obtained at above blowing ratios.Results show that blowing ratio has significant influence on the film cooling effectiveness.With the rise of blowing ratio,the cooling effectiveness changes in different laws with the orientation angle of hole;for an orientation angle of 30°,the cooling effectiveness reaches the highest at a blowing ratio of 1.0,whereas for an angle of 45°,it rises with growing blowing ratio,and for an angle of 60°,the cooling effectiveness reduces with the increase of blowing ratio.At higher blowing ratios,the optimum orientation angle is found to be 45°,when better cooling effectiveness can be obtained.
出处 《动力工程学报》 CAS CSCD 北大核心 2012年第5期368-372,共5页 Journal of Chinese Society of Power Engineering
基金 航空科学基金资助项目(2010ZB54004) 辽宁省教育厅基金资助项目(L2010425)
关键词 涡轮叶片 气膜冷却 冷却效率 吹风比 数值模拟 turbine blade; film cooling; cooling effectiveness; blowing ratio; numerical simulation
  • 相关文献

参考文献9

二级参考文献26

  • 1刘江涛,吴海玲,陶涛,彭晓峰.斜孔气膜冷却数值模拟分析[J].工程热物理学报,2004,25(6):1034-1036. 被引量:16
  • 2林智荣,袁新.平面叶栅气膜冷却流动的数值模拟[J].工程热物理学报,2006,27(4):580-582. 被引量:5
  • 3徐红洲.气膜冷却的实验研究[M].西安:西北工业大学,1996..
  • 4Leylek J H, Zerkle R D. Discrete-jet film cooling: A comparison of computational results with experiments[J]. ASME J Turbomachinery, 1994, 116: 358-363.
  • 5Lakehal D, Theodoridis G S, Rodi W. Computational of film cooling of a flat plate by lateral injection from a row of holes[J]. Int J Heat and Fluid Flow, 1998, 19:418 - 430.
  • 6Coakley T J, Huang P G. Turbulence modeling for high speed flows [R]. AIAA Paper, 1992:92-0436.
  • 7Yuan X, Daiguji H. A specially combined lower-upper factored implicit scheme for three-dimensional compressible Navier-Stokes equations [J]. Computers & Fluids, 2001, 30(3) ; 339 - 363.
  • 8Daiguji H, Yuan X, Yamamoto S. Stabilization of higher-order high resolution schemes for the compressible Navier-Stokes equations [J]. Int J Numerical Methods for Heat & Fluid Flow, 1997, 7(2/3) : 250 - 274.
  • 9Gritsch M,Schulz A,Wittig S. Adiabatic wall effectiveness measurements of film cooling holes with expanded exits[J]. ASME Journal of Turbomachinery, 1998,120 : 549 -556.
  • 10Gritsch M, Colban W, Schar H. Effect of hole geometry on the thermal performance of fan shaped film cooling holes[J]. ASME Journal of Turbomachinery, 2005, 127: 718-725.

共引文献82

同被引文献28

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部