摘要
运用量子力学PM3方法模拟α-环己基扁桃酸((R/S)-CHMA)与β-环糊精(β-CD)的主客体相互作用,探讨(R/S)-CHMA在β-CD上的手性识别机理。模拟结果能够准确预测色谱出峰顺序从而能从原子层次上对手性识别机制给予理论解释。PM3方法的计算结果表明:(S)-CHMA与β-CD形成的结合物比(R)-CHMA与β-CD形成的结合物稳定。从模拟包结物的构型可以看出(R/S)-CHMA与β-CD结合方式完全不同:(R)-CHMA是将苯环插入β-CD空腔形成包结物,而(S)-CHMA是将环己基插入β-CD空腔形成包结物。此外,(S)-CHMA除了自身的分子内氢键外,与β-CD分子之间还存在分子间氢键作用;而(R)-CHMA与β-CD之间没有分子间氢键作用。从而说明疏水作用以及弱的分子间氢键作用是造成手性识别的主要驱动力。
Host-vip complexation of β-cyclodextrin (β-CD) with α-cyclohexyl-mandelic acid enantiomers was simulated by quantum mechanics PM3 method for understanding the chiral recognition mechanism. The modeling results can correctly predict the retention order and provide an atomistic account of how chiral discrimination takes place. Modeling results showed that the stabilization of complexes formed by (R/S)-CHMA enantiomers and β-CD were different. The hydrophobic block of benzene moiet of (R)-CHMA was located in the cavity of β-CD to form an inclusion molecule, while it is the cyclohexyl that be inserted in the cavity in the case of (S)-CHMA to form an inclusion molecule. What is more, as for (S)-CHMA/β-CD complex, there is an intermolecular hydrogen bonds. The stabilization energy of the (S)-CHMA/β-CD complex was lower than that of the (R)-CHMA/ β-CD complex. The main driving forces responsible for chiral recognition are hydrophobic forces and weak hydrogen bondings.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2012年第4期396-400,共5页
Computers and Applied Chemistry
基金
国家自然科学基金资助项目(20956001)
中南大学研究生学位论文创新项目(2010ssxt138)
长沙市科技计划项目(K1104026-11)
关键词
PM3
α-环己基扁桃酸
Β-环糊精
手性识别
分子模拟
PM3, α-cyclohexyl-mandelic acid, 13-cyclodextrin, chiral recognization, molecular simulation