期刊文献+

Existence of Solutions to the Higher Order Nonlinear Differential Equations

Existence of Solutions to the Higher Order Nonlinear Differential Equations
在线阅读 下载PDF
导出
摘要 This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique. This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 〉0 and c~2+d~2〉0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期1-10,共10页 数学季刊(英文版)
关键词 n-th order boundary value problems one-sided Nagumo condition lower and upper solutions a priori estimates Leray-Schauder degree n-th order boundary value problems; one-sided Nagumo condition; lower and upper solutions; a priori estimates; Leray-Schauder degree
  • 相关文献

参考文献12

  • 1AGARWAL R P. Boundary Value Problems for Higher Order Differential Equations[M]. Singapore: World Scientific,1986.
  • 2ARONSON D,CRANDALL M G,PELETIER L A. Stabilization of solutions of a degenerate nonlinear diffusion problem[J]. Nonlinear Analysis,1982,6: 1001-1022.
  • 3CHOI Y S,LUDFORD G S. An unexpected stability result of the near-extinction diffusion flame for non- unity Lewis numbers[J]. Quart J Mech Appl Math,1989,42(1): 143-158.
  • 4COHEN D S. Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory[J]. SIAM J Appl Math,1971,20: 1-13.
  • 5CABADA A. The method of lower and upper solutions for second,third,fourth and higher order boundary value problem[J]. J Math Anal Appl,1994,185: 302-320.
  • 6BAI Zhan-bing,GE Wei-gao,WANG Yi-fu. The method of lower and upper solutions for some fourth-order equations[J]. J Inequal Pure Appl Math,2004,5(1): 1-8.
  • 7CABADA A,GROSSINHO M R,MINHóS F M. On the solvability of some discontinuous third-order nonlinear differential equations with two point boundary conditions[J]. J Math Anal Appl,2003,285: 174- 190.
  • 8CABADA A,HEIKKIL S. Externality and comparison results for discontinuous implicit third order functional initial-boundary value problems[J]. Appl Math Comput,2003,140: 391-407.
  • 9GROSSINHO M R,MINHóS F M. Existence result for some third-order separated boundary value problems[J]. Nonlinear Anal,2001,47 : 2407-2418.
  • 10GROSSINHO M R,MINHóS F M,SANTOS A I. A third order boundary value problem with one-sided Nagumo condition[J]. Nonlinear Anal,2005,63: 247-256.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部