期刊文献+

含摩擦柱铰链平面多体系统动力学的建模和数值方法 被引量:7

MODELING AND NUMERICAL ALGORITHM FOR PLANAR MULTIBODY SYSTEM WITH FRICTION ON REVOLUTE JOINTS
原文传递
导出
摘要 以含摩擦柱铰链平面多体系统为研究对象,建立其动力学方程并给出相应的数值计算方法。首先,建立了含摩擦转动柱铰链的力学模型。在此基础上,应用第一类Lagrange方程给出了该类系统的动力学方程,将Lagrange乘子与柱铰链的法向约束力建立了对应关系,并给出了柱铰链摩擦力的广义力。由于摩擦力的存在,使得该方程是关于Lagrange乘子的分段连续的非线性代数方程组,该文对此采用混合算法:对于连续段(物体相对转动的角速度不为零时),采用拟牛顿算法和龙格-库塔法求解方程;在不连续点(物体相对转动的角速度为零时),通过粒子群算法(PSO)、试算法和龙格-库塔法求解方程,克服了方程在不连续处Lagrange乘子(法向约束力)的初值不易选取的困难。最后,通过算例说明了该算法的有效性和可行性。 The modeling and numerical algorithm for a planar multi-body system with friction on revolute joints are developed.Based on the model of a revolute joint,the dynamic equations of the system are derived by the first kind of Lagrange's equations,then the relationship between Lagrange multipliers and the normal constraint force acting on the joint is obtained and the generalized force of friction is given.For the equations are piecewise continuous nonlinear algebraic equations about Lagrange multipliers,Quasi-Newton and Runge-Kutta algorithms are used to simulate the dynamical systems during the continuous interval(the relative angular velocity of the body does not equal to zero),and Particle Swarm Optimization,the trial and error method and Runge-Kutta algorithm are applied to solve the equations at the discontinuity points(the relative angular velocity of the body equals to zero).This algorithm overcomes the difficulty of choosing the initial values of Lagrange multipliers at discontinuity points.A numerical example is provided to demonstrate the validity and feasibility of the method.
作者 庄方方 王琪
出处 《工程力学》 EI CSCD 北大核心 2012年第5期193-199,共7页 Engineering Mechanics
基金 国家自然科学基金项目(11072014)
关键词 多体系统 转动铰链 LAGRANGE乘子 摩擦 粒子群算法 multi-body system revolute joints Lagrange multipliers friction Particle Swarm Optimization
  • 相关文献

参考文献16

  • 1刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201-213. 被引量:168
  • 2Pfeiffer F. On non-smooth dynamics [J]. Meccanica, 2008, 43: 533-554.
  • 3Foerg Martin, Pfeiffer Friedrich, Ulbrich Heinz. Simulation of unilateral constrained systems with many bodies [J]. Multibody System Dynamics, 2005, 14: 137-154.
  • 4Pfeiffer Friedrich, Foerg Martin, Ulbrich Heinz. Numerical aspects of non-smooth multibody dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195:6891 -6908.
  • 5Flores Paulo, Leine Remco, Glocker Christoph. Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach [J]. Multibody System Dynamics, 2010, 23: 165-190.
  • 6高海平,王琪,王士敏,李志从.单-双边约束多体系统的线性互补建模与数值积分方法[J].振动与冲击,2008,27(8):38-41. 被引量:4
  • 7富立,王琪.含摩擦双边约束多体系统的Time-Stepping方法[J].自然科学进展,2009,19(5):526-531. 被引量:2
  • 8Klepp H J. The existence and uniqueness of solutions for the pendulum with friction [J]. Journal of Sound and Vibration, 1994, 175(1): 138-143.
  • 9Klepp H J. Convergence properties of equations for the iterative acceleration computation for pendulum with friction [J]. Journal of Sound and Vibration, 1995, 179(1) 178-184.
  • 10Klepp H J. Trial-and-error based method for the investigation of multi-body systems with friction [J]. Journal of Sound and Vibration, 1996, 197(5): 629-637.

二级参考文献95

共引文献263

同被引文献58

  • 1赵刚练,姜毅,郝继光,陈余军,龚俊斌.考虑圆柱铰链间隙的多刚体系统动力学计算方法[J].振动与冲击,2013,32(17):171-176. 被引量:9
  • 2范新秀,王琪.车辆纵向非光滑多体动力学建模与数值算法研究[J].力学学报,2015,47(2):301-309. 被引量:11
  • 3潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 4A.L. Schwab,J.P. Meijaard,P. Meijers.A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems[J].Mechanism and Machine Theory.2002(9)
  • 5Pascal M. Non-smooth mechanical systems: application to systems with clearance and to dry friction oscillators [ C ]// AIP Conference Proceedings, 2009, 1107: 384.
  • 6Umarikar A C, Umanand L. Modeling of switching systems in bond graphs using the concept of switched power junctions [J]. Journal of the Franklin Institute, 2005, 342(5) : 131- 147.
  • 7Khemili I, Romdhane L. Dynamic analysis of a flexible slider-crank mechanism with clearance [ J ]. European Journal of Mechanics-A/Solids, 2007, 27 (5) : 882 - 898.
  • 8Kim J, Song W J, Kang B S. Stochastic approach to kinematic reliability of open-loop mechanism with dimensional tolerance [ J ]. Applied Mathematical Modeling, 2010,34 ( 5 ) : 1225 - 1237.
  • 9Flores P,Ambrdsio J.Kinematics and dynamics of multibody sys- tems with imperfect joints[M].Berlin:Springer,2008:47-66.
  • 10Pennestri E,Valentini P P,Vita L.Multibody dynamics simula- tion of planar linkages with Dahl friction[J].Multibody System Dynamics,2007,17(4):321-347.

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部