期刊文献+

一种基于逆序编码性质的Apriori算法改进 被引量:1

An Improvement for Apriori Based on the Property of Reverse Coding
在线阅读 下载PDF
导出
摘要 针对目前大多数Apriori改进算法在处理大数据集时所面临的性能瓶紧问题,该文以项集中各项在事务中的概率分布特征为切入点,并在BF-Apriori的逆序编码算法基础上,设计基于逆序转换的模式匹配算法和候选频繁项集生成算法,以提高规则挖掘过程的时间效率。最后,3个子算法构成了该文所提出的Apriori改进算法BF_Advanced-Apriori。理论分析及实验结果表明,BF_Ad-vanced-Apriori算法在处理大数据集时更具优势。 Aiming at performance bottleneck problem,which most current improved Apriori algorithms face when dealing with large dataset,this paper chooses the probability distribution of items as the entry point,then on the basis of reverse coding(RC) technique in BF-Aprori,this paper designs pattern matching based on reverse coding(PMRC) algorithm and candidate frequent itemsets generation(CFIG) algorithm,thus to improve the time efficiency of rule mining process.Finally,the three sub-algorithms constitute the improved Apriori algorithm,BF_Advanced-Apriori,which is proposed in this paper.Theoretical analysis shows that BF_Advanced-Apriori outperforms B-Apriori and BF-Apriori,which both are based on bit vector.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第5期83-86,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省科技计划基金资助项目(C31066 C21093)
关键词 位向量 项概率分布 逆序编码 部分匹配 bit vector item support distribution reversed coding partial matching
  • 相关文献

参考文献9

  • 1Agrawal R,Imielinske T,Swami A.Mining association rules between sets of items in large databases[C].New York:ACM Press,1993:207-216.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C].San Francisco:Morgan Kauf-mann,1994:487-499.
  • 3何海涛,吕士勇,田海燕.基于改进Apriori算法的数据库入侵检测[J].计算机工程,2009,35(16):154-155. 被引量:10
  • 4Wen Yinghsiang,Huang Jenwei,Chen Mingsyan.Hardware.Hardware-enhanced association rule mining with hashingand pipelining[J].IEEE Trans on Knowledge and Data Engineering,2008,20(6):784-795.
  • 5Boukerche A,Samarah S.A novel algorithm for mining association rules in wireless ad hoc sensor networks[J].IEEETrans on Parallel and Distributed Systems,2008,19(7):865-877.
  • 6宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 7RathinasabapathyR,Bhaskaran R.Performance comparison of hashing algorithm with Apriori[C].Washington:IEEEComputer Society,2009:729-733.
  • 8陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 9王盛,董黎刚,李群.一种基于逆序编码的关联规则挖掘研究[J].杭州电子科技大学学报(自然科学版),2010,30(5):169-172. 被引量:1

二级参考文献26

  • 1颜跃进,李舟军,陈火旺.一种挖掘最大频繁项集的深度优先算法[J].计算机研究与发展,2005,42(3):462-467. 被引量:20
  • 2陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 3田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 4孔令富,王晗,练秋生.一种基于关联规则挖掘的组织数据方法[J].计算机工程,2006,32(21):12-14. 被引量:5
  • 5Bertino E, Sandhu R. Database Security Concepts, Approaches, and Challenges[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(1): 2-19.
  • 6Lee S Y, Low W L, Wong P R. Learning Fingerprints for a Database Intrusion Detection System[C]//Proceedings of the 7th European Symposium on Research in Computer Security. Zurich, Switzerland: [s. n.], 2002.
  • 7Jose F, Henrique M, Marco V. Detecting Malicious SQL[C]//Proc. of TrustBus'07. Regensburg, Germany: Is. n.], 2007.
  • 8Roichman A, Gudes P. Fine-grained Access Control to Web Dambases[C]//Proceedings of the 12th ACM Symposium on Access Control Models and Technologies. Sophia Antipolis, France: [s. n.], 2007.
  • 9Hu Yi, Brajendra P. A Data Mining Approach for Database Intrusion Detection[C]//Proceedings of the ACM Symposium on Applied Computing. Nicosia, Cyprus:[s. n.], 2004.
  • 10Kotropoulos C, Papaioannou A. A Novel Updating Scheme for Probabilistic Latent Semantic Indexing[C]//Proc. of SETN'06. Heraklion, Crete, Greece: [s. n.], 2006.

共引文献222

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部