Variational minimizing parabolic and hyperbolic orbits for the restricted 3-body problems Dedicated to my Teacher Professor Yang Wannian on the Occasion of his 75th Birthday
Variational minimizing parabolic and hyperbolic orbits for the restricted 3-body problems Dedicated to my Teacher Professor Yang Wannian on the Occasion of his 75th Birthday
摘要
Using variational minimizing methods,we prove the existence of the odd symmetric parabolic or hyperbolic orbit for the restricted 3-body problems with weak forces.
Using variational minimizing methods, we prove the existence of the odd symmetric parabolic or hyperbolic orbit for the restricted 3-body problems with weak forces.
基金
supported by National Natural Science Foundation of China (Grant No. 11071175)
a grant for advisor and PhD students from educational committee of China
参考文献18
-
1Ambrosetti A, Coti Zelati V. Periodic Solutions of Singular Lagrangian Systems. Basel: Birkh¨auser, 1993.
-
2Bolotin S V. Existence of homoclinic motions, Vestnik Moskov Univ Ser I Mat Mekh, 1983, 6: 98–103.
-
3Chang K C. Infinite dimensional Morse thory and multiple solution problems. In: Progress in Nonlinear Diff Equ and their Appl, vol. 6. Boston: Birkhuser, 1993.
-
4Hardy G, Littlewood J E, Polya G. Inequalities, 2nd ed. Cambridge: Cambridge University Press, 1952, 182–184.
-
5Long Y. Index Theory for Symplectic Paths with Applications. Boston: Birkhuser, 2002.
-
6McGehee R. Parabolic Orbits of the Restricted Three-body Problem. New York–London: Academic Press, 1973.
-
7Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Berlin: Springer-Verlag, 1989.
-
8Mathlouthi S. Periodic orbits of the restricted three-body problem. Trans Amer Math Soc, 1998, 350: 2265–2276.
-
9Moser J. Stable and Random Motions in Dynamical Systems. Ann Math Studies 77. Princeton: Princeton University Press, 1973.
-
10Palais R. The principle of symmetric criticality. Commun Math Phys, 1979, 69: 19–30.
-
1C.H.Wrner,陈敏华.对称性和叠加原理的简单应用[J].大学物理,1984,0(5):47-47.
-
2邱玉波,陈国新,龙燕秋.类Li离子电偶极跃迁的碰撞强度[J].原子与分子物理学报,1997,14(2):283-288.
-
3A.Ebaid,B.Masaedeh,E.E1-Zahar.A New Fractional Model for the Falling Body Problem[J].Chinese Physics Letters,2017,34(2):1-3.
-
4景义林.卫星抛射点在其抛物线双曲线轨道上的位置与卫星3类轨道的比较[J].大学物理,2011,30(8):13-17.
-
5李世贵.数据误差的最小化方法[J].重庆石油高等专科学校学报,2000,2(4):18-22.
-
6SUN JiaChang.Multi-neighboring grids schemes for solving PDE eigen-problems[J].Science China Mathematics,2013,56(12):2677-2700. 被引量:5
-
7张方伟,曲淑英,王志强,姚炳学,曾现洋.偏差最小化方法及其在多属性决策中的应用[J].山东大学学报(理学版),2007,42(3):32-35. 被引量:7
-
8马大柱,龙志超,胡凤莲.两种流形改正近似方案的时间效率比较[J].湖北民族学院学报(自然科学版),2014,32(2):153-155.
-
9Yiming Long Nankai Institute of Mathematics. Nankai University. Tianjin 300071. P. R. China Shiqing Zhang Department of Applied Mathematics Chongqing University. Chongqing 40004, P.R. China.Geometric Characterizations for Variational Minimization Solutions of the 3-Body Problem[J].Acta Mathematica Sinica,English Series,2000,16(4):579-592. 被引量:3
-
10张立.《力学基础》(第二版)的特点[J].中国大学教学,1995(5):43-43.