期刊文献+

Banach空间中广义常微分方程的Φ有界变差解 被引量:1

Bounded Φ-variation solutions of generalized ordinary differential equations in Banach space
在线阅读 下载PDF
导出
摘要 利用Φ有界变差函数理论与Banach不动点定理,建立了Banach空间中广义常微分方程的Φ有界变差解的存在唯一性定理,并给出这类方程在脉冲微分系统中的应用. The existence and uniqueness theorems of the bounded Φ-variation solution of generalized ordinary differential equations in Banach spaces are established by using the bounded Φ-variation function theory and Banach fixed-point theorem.An example is given to show this class of equation in the application of impulsive differential system.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期6-10,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11061031) 西北师范大学科技创新工程资助项目
关键词 Kurzweil积分 BANACH空间 广义常微分方程 Φ有界变差解 Kurzweil integral Banach space generalized ordinary differential equation bounded Φ-variation solution
  • 相关文献

参考文献10

  • 1KURZWEIL J. Generalized ordinary differential equations and continuous dependence on a parameter [J]. CzechMath J, 1957, 7: 418-449.
  • 2AFONSO S, BONOTTO E M, SCHWABIK S. Discontinuous local semi-flows for Kurzweil equations leading to LaSalle's invariance principle for non- autonomous systems with impulses [ J ]. J Differential Equations, 2011, 250: 2969-3001.
  • 3HALAS Z, TVRDY M. Singular periodic impulse problems[J]. Nonlinear Oscillations, 2008, 11: 32-44.
  • 4FEDERSON M, TABOAS P Z, Toplogical dynamics of retarded functional differential equation [J]. J Differential Equations, 2003, 195: 313- 331.
  • 5FEDERSON M, SCHWABIK S. Stability for retarded functional differential equation [ J ]. Ukr Math Journal, 2008, 60: 107-126.
  • 6FEDERSON M, SCHWABIK S. Generalized ODE approach to impulsive retarded functional differential equations [ J ]. Differential Integral Equation, 2006, 19(11): 1201-1234.
  • 7SCHWABIK S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992.
  • 8MUSIELAK J, ORLICZ W. On generalized variations( I )[J]. StudiaMath, 1959, 18: 11-41.
  • 9李宝麟,吴从炘.Kurzweil方程的Φ-有界变差解[J].数学学报(中文版),2003,46(3):561-570. 被引量:23
  • 10李宝麟,梁雪峰.一类脉冲微分系统的Φ-有界变差解[J].西北师范大学学报(自然科学版),2007,43(4):1-5. 被引量:9

二级参考文献24

  • 1Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449.
  • 2Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583.
  • 3Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389.
  • 4Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian).
  • 5Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian).
  • 6Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992.
  • 7Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293.
  • 8Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270.
  • 9Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243.
  • 10Musielak J.. Orliez W.. On generalized variations (I). Studia Math., 1959, 18: 11-41.

共引文献27

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部