期刊文献+

平原区土壤质地的反射光谱预测与地统计制图 被引量:14

Prediction and Mapping of Soil Texture of a Plain Area Using Reflectance Spectra and Geo-statistics
原文传递
导出
摘要 基于地统计方法的土壤属性制图通常需要大量的采样与实验室测定。本研究提出利用可见光近红外(visible-nearinfrared spectroscopy,VNIR)光谱技术测定替代实验室测定,并与地统计方法相结合预测土壤质地的空间变异。通过建立砂粒(〉0.02 mm),粉粒(0.002-0.02 mm),黏粒(〈0.002 mm)含量的VNIR光谱预测模型,将模型预测得到的质地数据和建模点实测质地数据一同用于地统计分析和Kriging插值制图。以江苏北部黄淮平原地区为案例的研究结果表明,砂粒、粉粒、黏粒含量的预测值和实测值的均方根误差(RMSE)分别为8.67%、6.90%3、.51%,平均绝对误差(MAE)分别为6.46%、5.60%、3.05%,显示了较高的预测精度。研究为快速获取平原区土壤质地空间分布提供了新的可能的途径。 Digital soil mapping methods based on Geo-statistics often needs a large number of samples.This study investigated a method that integrating geostatistics and visible-near-infrared(VNIR) spectroscopy to estimate soil texture of a plain area in Jiangsu province.Predictive models between soil texture(sand,silt and clay content) and VNIR spectroscopy were established.Soil texture data of training samples and those obtained from the predicted models were used for mapping soil texture using ordinary kriging method.A validation dataset produced the estimates of error for the predicted maps of sand,silt and clay expressed as RMSE with the values of 8.67%,6.90%,and 3.51%,respectively.This study demonstrates the possibility to potentially map regional soil texture variation digitally with considerable success.
出处 《土壤通报》 CAS CSCD 北大核心 2012年第2期257-262,共6页 Chinese Journal of Soil Science
基金 江苏省基础研究计划(BK2008058) 中国科学院知识创新工程重要方向性项目(KZCX2-YW-409)资助
关键词 数字土壤制图 平原区 土壤质地 地统计学 KRIGING Digital soil mapping Plain area Soil texture Geostatistics Kriging
  • 相关文献

参考文献27

  • 1DUAN Q,SCHAAKE J,KOREM V.A priori estimation of landsurface model parameters.In LAKSHMI V,ALBERTSON J andSCHAAKE J(ed.)Land surface hydrology,meteorology and climate:observations and modeling[G].Washington:Amer.Geophys.Unionpress,2001:77-94.
  • 2DAI Y J,ZENG X B,DICKINSON R E,et al.The common landmodel(CLM)[J].Bulletin of the American Meteorological Society,2003,84(8):1013-1023.
  • 3孙孝林,赵玉国,赵量,李德成,张甘霖.应用土壤-景观定量模型预测土壤属性空间分布及制图[J].土壤,2008,40(5):837-842. 被引量:31
  • 4ZHU A X,YANG L,LI B L,et al.Construction of membershipfunctions for predictive soil mapping under fuzzy logic[J].Geoderma,2009,155:164-174.
  • 5QI F,ZHU A X,HARROWER M,et al.Fuzzy soil mapping basedon prototype category theory[J].Geoderma,2006,136(3-4):774-787.
  • 6THOMPSON J A,PENA-YEWTUKHIW E M,GROVE J H.Soil-landscape modeling across a physiographic region:Topographicpatterns and model transportability[J].Geoderma,2006,133(1-2):57-70.
  • 7LAMSAL S,MISHRA U.Mapping soil textural fractions across alarge watershed in north-east Florida[J].Journal of EnvironmentalManagement,2010,91(8):1686-1694.
  • 8IQBAL J,THOMASSON J A,JENKINS J N,et al.Spatial variabilityanalysis of soil physical properties of alluvial soils[J].Soil ScienceSociety of America Journal,2005,69(4):1338-1350.
  • 9LOPEZ-GRANADOS F,JURADO-EXPOSITO M,PENA-BARRAGAN J M,et al.Using geostatistical and remotesensing approaches for mapping soil properties[J].European Journalof Agronomy,2005,23(3):279-289.
  • 10OBERTHUR T,GOOVAERTS P,DOBERMANN A.Mapping soiltexture classes using field texturing,particle size distribution andlocal knowledge by both conventional and geostatistical methods[J].European Journal of Soil Science,1999,50(3):457-479.

二级参考文献111

共引文献441

同被引文献254

引证文献14

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部