期刊文献+

基于协同过滤的网络论坛个性化推荐算法 被引量:6

Personalized Recommendation Algorithm of Internet Forum Based on Collaborative Filtering
在线阅读 下载PDF
导出
摘要 提出一种基于协同过滤的网络论坛个性化推荐算法,根据用户的发帖、回帖、阅读等记录,采用加权方法计算用户帖子的评分矩阵,获取邻近用户集合,通过邻居用户的帖子评分,计算目标用户的帖子预测评分,推荐预测评分最高的帖子。实验结果表明,该算法的推荐质量较高。 This paper proposes a personalized recommendation algorithm of Internet forum based on collaborative filtering.According to the users posting,replies,and reading records,it computes user rating matrix by weighted method,gets the nearest users,then calculates the target user's posts prediction score according to neighbors' posts,and recommends the highest score prediction posts to target user.Experimental results show that the algorithm can recommend high-quality posts.
出处 《计算机工程》 CAS CSCD 2012年第5期67-69,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61070061)
关键词 网络论坛 个性化推荐 协同过滤 相似度 用户兴趣 Internet forum personalized recommendation collaborative filtering similarity user interest
  • 相关文献

参考文献8

二级参考文献188

  • 1YE Hui-min,CHENG Wei,DAI Guan-zhong.Design and Implementation of On-Line Hot Topic Discovery Model[J].Wuhan University Journal of Natural Sciences,2006,11(1):21-26. 被引量:14
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献890

同被引文献45

  • 1常唯.标签在数字学术资源内容揭示中的作用研究[J].图书馆杂志,2007,26(1):46-52. 被引量:19
  • 2王芳,王万森.关系数据库中关联规则挖掘的一种高效算法[J].微机发展,2004,14(9):20-22. 被引量:13
  • 3庾慧英,刘尚.双论域上的变精度粗糙集模型[J].科学技术与工程,2007,7(1):4-7. 被引量:9
  • 4Nogueira A, Salvador M. Using Neural Networks to Classify Internet Users Telecommunications[C]//Proc. of AICT-SAPIR- ELETE'05. Washington D. C., USA: IEEE Computer Society, 2005: 183-188.
  • 5Nguyen L. A Proposal of Discovering User Interest by Support Vector Machine and Decision Tree on Document Classifi- cation[C]//Proc, of International Conference on Computational Science and Engineering. IS. 1.]: IEEE Press, 2009:809-814.
  • 6Sullivan A S, Sheffi'in M. Economics: Principles in Action[M]. New Jersey, USA: [s. n.], 2003.
  • 7Gini C. Variabilia E Mutabilita[M]. Bologna, Italy: [s. n.], 1912.
  • 8Haines W. VSM Profiling of CoCr Films: A New Analytical Technique[J]. IEEE Transactions on Maetics, 1984, 20(5): 812- 814.
  • 9Grouplens Research[EB/OL]. (2011-01-18). http://www.grouplens. org/node/73.
  • 10SARWAR B, KARYPIS G, KONSTAN J A. Analysis of recommendation algorithms for e-commerce [ C ]//Proc of ACM Conference on Electronic. 2000 : 158-167.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部