期刊文献+

网络舆情中一种基于OLDA的在线话题演化方法 被引量:29

OLDA-based method for online topic evolution in network public opinion analysis
在线阅读 下载PDF
导出
摘要 研究网络舆情分析中话题演化方法。首先分析网络舆情信息的特点;在此基础上,建立网络舆情信息模型,基于话题模型抽象描述文本内容的隐含语义,进而建立文本流在时间序列上的关联模型;进一步,提出基于OLDA的话题演化方法,针对舆情信息的特点,建立不同时间片话题间的关联。实验结果表明,该方法能够有效检测话题演化,为网络舆情分析提供了有效途径。 The topic evolution was investigated for network public opinion analysis. The properties of network public opinion information were analyzed firstly. Based on the properties, the latent semantics of textual data for network public opinion was described by using the topic model, and the text streams are modeled with a consideration of time for online analysis. Furthermore, a topic evolution method based on OLDA was proposed by incorporating the correlation of topics among time slices. The proposed method was experimentally verified to be efficient for detecting topic evolution of network public opinion.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第1期150-154,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60902094)
关键词 网络舆情 话题模型 话题演化 GIBBS抽样 network public opinion topic model topic evolution Gibbs Sampling
  • 相关文献

参考文献19

  • 1徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:142
  • 2Allan J,Carbonell J,Doddington G,et a1.Topic detectionand tracking pilot study:final report[C]//DARPA BroadcastNews Transcription and Understanding Workshop,SanFrancisco,CA,Morgan Kaufmann Publishers Inc,1998:194-218.
  • 3The 2002 Topic Detection and Tracking(TDT2002)Taskdefinition and evaluation plan[EB/OL].[2011-03- 18].ftp://jaguar.ncsl.nist.gov/tdt/tdt2002/evalplans/TDT02.Eval.plan.v1.1.pdf.
  • 4Blei D M,Ng A Y,Jordan M I.Latent dirichletallocation[J].Journal of Machine Learning Research,2003(3):993-1022.
  • 5单斌,李芳.基于LDA话题演化研究方法综述[J].中文信息学报,2010,24(6):43-49. 被引量:87
  • 6Wang X R,McCallum A.Topic over time:a non-Markovcontinuous-time model of topical trends[C]//Proceedings ofthe 12th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining,Philadelphia,PA,USA,2006:424-433.
  • 7Blei D M,Lafferty J D.Dynamic topic model[C]//Proceedings of the 23rd International Conference on MachineLearning,Pittsburgh,Pennsylvania,2006:113-120.
  • 8Wang C,Blei D M,Heckerman D.Continuous time dynamictopic models[C]//Proceedings of the 24th AnnualConference on Uncertainty in Artificial Intelligence,Corvallis,Oregon,2008:579-586.
  • 9Nallapati R M,Cohen W,Ditmore S,et.al.Multi-scale topictomography[C]//Proceedings of the 13th ACM SIGKDDInternational Conference on Knowledge Discovery and DataMining,San Jose,California,USA,2007:520-529.
  • 10Wei X,Sun J,Wang X.Dynamic mixture models for multipletime series[C]//Proceedings of the 20th International JointConference on Artifical Intelligence,Hyderabad,India,2007:2909-2914.

二级参考文献108

  • 1徐剑梅.英国政府与媒体在突发事件中的协作[J].中国记者,2004(10):13-14. 被引量:17
  • 2于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 3朱靖波,叶娜,罗海涛.基于多元判别分析的文本分割模型[J].软件学报,2007,18(3):555-564. 被引量:15
  • 4石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 5Kehagias A, Nicolaou A, Petridis V, Fragkou P. Text segmentation by product partition models and dynamic programming. Mathematical and Computer Modeling, 2004, 39(2-3): 209-217.
  • 6Gina-Anne L. Prosody-based topic segmentation for mandarin broadcast news. In: Proceedings of the 9th American Chapter of the Association for Computational Linguistics- Human Language Technologies. Boston, USA: Association for Computational Linguistics, 2004. 137-140.
  • 7Olivier F. Using collocations for topic segmentation and link detection. In: Proceedings of the 19th International Conference on Computational Linguistics. Taipei, China: Association for Computational Linguistics, 2002. 1-7.
  • 8Li H, Yamanishi K. Topic analysis using a finite mixture model. Information Processing and Management, 2003, 39(4): 521-541.
  • 9Hofmann T. Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 1999. 289-296.
  • 10Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-]022.

共引文献401

同被引文献406

引证文献29

二级引证文献324

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部