期刊文献+

自适应卡尔曼滤波器在车用锂离子动力电池SOC估计上的应用 被引量:13

State-of-charge estimation of lithium-ion batteries in electric vehicles based on an adaptive extended Kalman filter
在线阅读 下载PDF
导出
摘要 进行了用自适应扩展卡尔曼滤波(AEKF)算法估计电动车用锂离子动力电池的荷电状态(SOC)的研究。基于混合脉冲功率特性(HPPC)试验,利用遗传优化算法改进Thevenin电路模型参数辨识方法,且从充放电两个方向来获得模型参数,然后在动态应力测试(DST)工况下对改进的模型进行仿真验证分析,基于改进的模型和联邦城市行驶工况(FUDS),应用AEKF算法开展SOC估计研究。仿真和台架试验结果对比表明,改进的Thevenin电路模型和AEKF算法均具有较高的精度,最大估算误差分别为1.70%和2.53%;同时AEKF算法具有较好的鲁棒性,可以有效地解决初始估算不准和累计误差的问题。 An adaptive extended Kalman filter (AEKF) algorithm was adopted to estimate the state-of-charge (SOC) of lithium-ion batteries in electric vehicles. Based on the hybrid pulse power characterization (HPPC) test, an improved Thevenin battery model was achieved by using the genetic algorithm to optimize the parameter identification method and identify the model parameters from the charge direction and the discharge direction respectively. In addition, the improved model was verified under the dynamic stress test cycle. Further, an AEKF algorithm was adopted to design the approach for estimation of SOC of lithium-ion batteries. Finally, the proposed method was verified by the simulation experiment and the bench test under the federal urban driving schedules. It is shown that the improved Thevenin model and the proposed SOC estimation method all have the high accuracy and their maximum errors are 1.70% and 2.53% respectively, and the AEKF algorithm is of robustness and it can efficiently solve the problems of cumulate error and inaccurate initial SOC estimation.
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第2期198-204,共7页 Chinese High Technology Letters
基金 863计划(2008AA11A124,2011AA112304,2011AA11A228,2011AA1290)资助项目.
关键词 自适应扩展卡尔曼滤波(AEKF) 荷电状态(SOC) 参数辨识 电池模型 锂离 子电池 电动汽车 adaptive extended Kalman filter (AEKF), state-of-charge (SOC), parameter identification, battery model, lithium-ion power battery, electric vehicles
  • 相关文献

参考文献3

二级参考文献23

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:200
  • 2Dougal R A,Liu S,White R E.Power and life extension of battery-ultracapacitor hybrids.IEEE Transactions on Components and Packaging Technologies,2002,25(1):120-131.
  • 3Lukic S M,Jian C,Bansal R C,et al.Energy storage systems for automotive applications.IEEE Transactions on Industrial Electronics,2008,55(6):2258-2267.
  • 4Bitsche O,Gutmann G.Systems for hybrid cars.Journal of Power Sources,2004,127(1-2):8-15.
  • 5Anderman M.The challenge to fulfill electrical power requirements of advanced vehicles.Journal of Power Sources,2004,127(1-2):2-7.
  • 6Saiju R,Heier S.Performance analysis of lead acid battery model for hybrid power system.In:Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference & Exposition,Chicago,IL,USA,2008.404-409.
  • 7Bentley P,Stone D A,Schofield N.The parallel combination of a VRLA cell and supercapacitor for use as a hybrid vehicle peak power buffer.Journal of Power Sources,2005,147(1):288-294.
  • 8Szumanowski A,Piorkowski P,Chang Y.Batteries and ultracapacitors set in hybrid propulsion system.In:Proceedings of the 2007 International Conference on Power Engineering,Energy and Electrical Drives.Setubal,Portugal,2007.122-127.
  • 9Garcia F S,Ferreira A A,Pomilio J A.Control Strategy for Battery-Ultracapacitor hybrid energy storage system.In:Proceedings of the 2009 IEEE Applied Power Electronics Conference and Exposition,Washington D.C.,USA 2009.826-832.
  • 10Jing Z.Investigation and Simulation of the Combined Energy Storage System of Ultracapacitor and Battery.Wuhan:Wuhan University of Technology,2005 (in Chinese).

共引文献120

同被引文献73

  • 1林成涛,仇斌,陈全世.电流输入电动汽车电池等效电路模型的比较[J].机械工程学报,2005,41(12):76-81. 被引量:59
  • 2王仁广,刘昭度,齐志权,马岳峰.基于自适应卡尔曼滤波算法确定汽车参考车速[J].农业机械学报,2006,37(4):9-11. 被引量:29
  • 3夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 4文锋.纯电动汽车用锂离子电池组管理技术基础问题研究[D].北京:北京交通大学,2010.
  • 5李顶根,李竟成,李建林.电动汽车锂离子电池能量管理系统研究[J].仪器仪表学报,2007,28(8):1522-1527. 被引量:29
  • 6PILLER S, KALAITZAKIS K, VOULGARIS N C, et al. Methods for state-of-charge determination and their appli- cations[ J ]. Journal of Power Sources, 2001,96 ( 1 ) : 113-120.
  • 7REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State- of-health monitoring of lithium-ion batteries in electric vehi- cles by on-board internal resistance estimation[J]. 2011,196 (12) :5357-5363.
  • 8CHARKHGARD M, FARROKHI M. State-of-charge esti- mation for lithium-ion batteries using neural networks and EKF [ J ]. IEEE Transactions on Industrial Electronics, 2010,57(12) :4178-4187.
  • 9LEE S, KIM J, LEE J, et al. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge [ J ]. Journal of Power Sources ,2008,185 (2) : 1367-1373.
  • 10SHEN W X. State of available capacity estimation for lead- acid batteries in electric vehicles using neural network [ J ]. Energy conversion and management. 2007,48(2) :433-442.

引证文献13

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部