期刊文献+

基于Web数据挖掘的用户浏览兴趣路径研究 被引量:5

Research of user preferred browsing paths based on Web data mining
在线阅读 下载PDF
导出
摘要 使用Web日志与用户浏览行为相结合的方式对用户浏览兴趣模式进行挖掘。分别建立以访问次数、平均到网页中字符数的访问时间和拉动滑动条次数为元素值的矩阵,通过对矩阵进行路径兴趣度的计算得到兴趣子路径,进行合并生成用户兴趣路径集。实例分析表明该算法是可行和有效的,对于电子商务网站的优化和实施个性化服务具有意义。 This paper combines the Web logs and users browsing behavior to mine user browsing interest patterns. This paper establishes three matrixes which elements are the average visit times(divided by the number of characters in the website)and the frequency of visits and the number of users to pull scroll. Preferred browsing sub-paths will be discovered from the computation of this matrix. All the sub-paths are combined to generate a set of user preferred browsing paths. Experiments shows that the algorithm is feasible and effective for e-commerce site optimization and meaningful implementation of personalized service.
出处 《计算机工程与应用》 CSCD 2012年第7期106-108,114,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.70771067)
关键词 浏览兴趣路径 WEB使用挖掘 用户浏览行为 WEB日志 preferred browsing paths Web usage mining users browsing behavior Web logs
  • 相关文献

参考文献11

二级参考文献69

  • 1涂承胜,陆玉昌.Web使用挖掘技术研究[J].小型微型计算机系统,2004,25(7):1177-1184. 被引量:37
  • 2李林,崔志明.用户Web日志序列模式挖掘研究[J].微机发展,2005,15(5):119-121. 被引量:4
  • 3龚汉明,周长胜.一种Web挖掘的框架[J].计算机工程与设计,2005,26(8):2128-2130. 被引量:5
  • 4王新,马万青,潘文林.基于Web日志的用户访问模式挖掘[J].计算机工程与应用,2006,42(21):156-158. 被引量:15
  • 5Chen M S,Park J S,Yu P S.Data mining for path traversal patterns in a Web environment [C]//Proeeedings of the 16th International Conference on Distributed Computing Systems,Hong Kong, 1996 : 385-392.
  • 6Mobasher B,Srivastava J.Data preparation for mining world wide web browsing pattems[J].Knowledge and Information System,1999, 1(1):5-32.
  • 7Jin X,Zhou Y,Mobasher B.Task-oriented Web user modeling for recommendation [C]//Proceedings of the lOth International Conference on User Modeling,Edinburgh,Scotland,July 2005.
  • 8Chen M S,Park J S,Yu P S.Data mining for path traversal patterns in a Web environment[C]//Proceedings of the 16th International Conference on Distributed Computing Systems,Hong Kong, 1996: 385-392.
  • 9Mobasher B,Srivastava J.Data preparation for mining World Wide Web browsing patterns[J].Knowledge and Information System, 1999,1 (1):5-32.
  • 10Chen M S,Park J S,Yu P.Efficient data mining for path traversal patterns[J].IEEE Trans on Knowledge and Data Engineering, 1998,10 (2) : 209-221.

共引文献526

同被引文献32

  • 1谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 2Chen M S, Park J S, Yu P S. Data mining for path traversal patterns in a Web environment. Proceedings of the 16th International Confer- ence on Distributed Systems, 1996:385-392.
  • 3Cooley R, Mobasher B, Srivastava J. Data preparation of mining world wide web browsing patterns. Knowledge Information Systems, 1999; (11) :5-32.
  • 4Yfacca F,Lanzi P.Mining interesting knowledge from web logs:a survey[J].Data and Knowledge Engineering,2005,53(3):225-241.
  • 5Runker T,Beadek J.Web mining with relational clustering[J].International Journal of Approximate Reasoning,2003,32(2):217-236.
  • 6Liao T W.Clustering of time series data-a survey[J].Pattern Recognition,2005,38:1857-1874.
  • 7Rees J,Koehler G.Learning genetic algorithm parameters using hidden Markov models[J].European Journal of Operational Research,2006,175(2):806-820.
  • 8Kullback S,Leibler R A.On information and sufficiency[J].Annuals of Mathematical Statistics,1951,22(1):79-86.
  • 9De Angelis L,Dias J G.Mining categorical sequences from data using a hybrid clustering method[J].European Journal of Operational Research,2014,234(1):720-730.
  • 10Dempster A P,Laiard N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society Series B-Methodological,1977,39(1):1-38.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部