期刊文献+

炼镍转炉溅渣护炉的水模试验 被引量:2

Hydraulic simulation of slag splashing in nickel converter
在线阅读 下载PDF
导出
摘要 利用1/4水力学模型试验研究炼镍转炉溅渣工艺参数对炉衬各部位溅渣量的影响。结果表明:溅渣时间和炉体倾角是影响溅渣总量的显著性因素,且与之成正比关系。溅渣量分布受炉体角度和初始熔池深度影响较大,当炉体角度由-10°增至-30°或初始熔池深度(h/D)由0.078增至0.172时,风口对面的溅渣量比例由80%急剧降为5%左右,风口面和端墙面溅渣量相应增大。溅渣高度随着炉体角度和初始熔池深度增加而降低。溅渣模式分为喷溅、渣涌或两者共存。溅渣过程通过调整炉体倾角,可以实现较大的溅渣总量和均匀的分布。工业溅渣试验验证了水模型的研究结果,风口粘结过多等问题得到了解决。 The influences of operational conditions on slag splashing for the lining of nickel blowing converter were investigated with an 1/4 scale hydraulical model experiment.The results show that the time of gas blowing and the angle of furnace play a significant role in total amount of splashes in direct ratio.The distribution of splashes is largely decided by the furnace angle and the initial bath depth.Proportion of splashes on opposite side of tuyere line is dramatically reduced from 80% to 5% or so when the furnace angle or the initial bath depth(h/D) varies from -10° to -30° or 0.078 to 0.172,meanwhile those on side of the tuyere line and the side end are greatly increased;the height of splashing decreases with the tuyere and initial bath depth increasing.The mode of slag splashing can be defined as the injection slag splashing and surging slag splashing or two both.Large amount and even distribution on different walls are acquired by adjusting angle of furnace at definite bath depth.The industrial test agrees well with the results in the model,and the problems such as heavy accretion on tuyere line are also resolved.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第1期287-295,共9页 The Chinese Journal of Nonferrous Metals
关键词 镍转炉 溅渣护炉 水模型 溅渣模式 喷溅 nickel converter slag splashing water modeling splashing mode injection
  • 相关文献

参考文献27

  • 1GUEVARA F J,IRONS G A.Simulation of slag freeze formation:Part I.Experimental study[J].Metallurgical and Materials Transactions B,2011,42(4):652-663.
  • 2MIEKE C,EVQUENI J,BART B,PARTRIK W.Freeze-lining formation of a synthetic lead slag:Part I.Microstructure formation[J].Metallurgical and Materials Transactions B,2009,40(5):619-631.
  • 3李明月,曹玺,姜艳华.AOD炉溅渣护炉喷枪枪位自动控制专家系统[J].仪器仪表用户,2008,15(6):14-16. 被引量:1
  • 4MIEKE C,BART B PATRICK W.The importance of slag engineering in freezing-lining applications[J].Metallurgical and Materials Transactions B,2009,40(10):643-655.
  • 5刘鑫韬,陈伟庆,马德刚,等.一种镍铜冶炼转炉溅渣护炉方法:中国,200810113158.4[P],2008.5.28.
  • 6CHIBWE D K,AKDOGAN G,ALDRICH C,ERIC R C.CFD modeling of global mixing parameters in a Peirce-Smith converter with comparison to physical modeling[J].Chemical Product and Process Modeling,2011,6(1):1-28.
  • 7HASANAZADEH A,ASKARI M.Investigation and modeling of splashing in the Peirce-Smith converter[J].Chemical Product and Process Modeling,2008,3(1):1-17.
  • 8GULAWANI S S,DAHIKAR S K,JOSHI J B,SHAH M S,RAMAPRASAD C S,SHUKLA D S.CFD simulation of flow pattern and plume dimensions in submerged condensation and reactive gas jets into a liquid bath[J].Chemical Engineering Science,2008,63(9):2420-2435.
  • 9LIOW J L,GARY N B.Slopping resulting from gas injection in a Peirce-Smith converter:Water modeling[J].Metallurgical and Materials Transactions B,1990,21(12):987-996.
  • 10CHATTERJEE A,BRADSHAW A.Break-up of a liquid surface by an impinging gas jet[J].Journal of Iron and Steel Institute,1972,210(33):179-187.

二级参考文献35

共引文献35

同被引文献26

  • 1JAVEN T, JIE B, NICOLAS H, YANG R Y. Modeling collective dynamics of particulate systems under time-varying operating conditions based on Markov chains[J]. Advanced Powder Technology, 2013, 24(2): 451-458.
  • 2MELLMANN J. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior[J]. Powder Technology, 2001, 118(3): 251-270.
  • 3KHAKHAR D V, MCCARTHY J J, TROY SHINBROT, OTT1NO J M. Transverse flow and mixing of granular materials in a rotating cylinder[J]. Phys Fluids, 1997, 9(1): 31-43.
  • 4NIELSEN A R, ANIOL R W, LARSEN M B, GLARBORG P. Mixing large and small particles in a pilot scale rotary kiln[J]. Powder Technology, 2011, 210(3): 273-280.
  • 5van PUYVELDE D R, YONG B R, WILSON M A. Experiment determination of transverse mixing kinetics in a rolling drum by image analysis [J]. Powder Technology, 1999, 106:183-191.
  • 6van PUYVELDE D R. Comparison of discrete elemental modelling to experimental data regarding mixing of solids in the transverse direction of a rotating kiln[J]. Chemical Engineering Science, 2006, 61: 4462-4465.
  • 7SCHUTYER M A I, PADDING J T, WEBER F J. Discrete particle simulation predicting mixing behavior of solid substrate particles in a rotating drum fermenter[J]. Biotechnology and Bioengineering, 2001, 75(6): 665-675.
  • 8FINNIE G J, KRUYT N P, YE M. Longitudinal and transverse mixing in rotary kilns: A discrete element method approach[J]. Chemical Engineering Science, 2005, 60:4083-4091.
  • 9LIU P Y, YANG R Y, YU A B. DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99-107.
  • 10DOUCET J, BERTRAND F, CHAOUKI J. An extended radioactive particle tracking method for systems with irregular moving boundaries[J]. Powder Technology, 2008, 181(2): 195-204.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部