摘要
River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime. The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature. In this article, the experimental studies about the ice accumulation in a river bend are reviewed. Based on experiments conducted so far, the criteria for the formation of ice jams in the river bend, the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed. The two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend. A formula is proposed for describing the deformation of the ice jam bottom. Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.
River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime. The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature. In this article, the experimental studies about the ice accumulation in a river bend are reviewed. Based on experiments conducted so far, the criteria for the formation of ice jams in the river bend, the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed. The two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend. A formula is proposed for describing the deformation of the ice jam bottom. Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.
基金
supported by the National Natural Science Foundation of China (Grant No. 50979021)
supported by the Scientific Research and Development fund of Hefei University of Technology (Grant No. 2010HGXJ0064)