期刊文献+

基于频繁项集挖掘算法的改进与研究 被引量:31

Improved apriori mining frequent items algorithm
在线阅读 下载PDF
导出
摘要 关联规则挖掘是数据挖掘领域中重要的研究内容,频繁项集挖掘又是关联规则挖掘中的关键问题之一。针对已有的频繁项集挖掘算法存在的问题,通过对Apriori算法的分析,提出了Inter-Apriori频繁项集挖掘算法。该算法使用交集策略减少扫描数据库的次数,从而使算法达到较高的效率。实验结果表明,Inter-Apriori算法是Apriori算法效率的2~4倍。 Association rule mining is an important data mining areas of research contents,frequent itemset mining association rules mining is one of the key issues.According to the existing frequent itemset mining algorithm,based on the existing problems,this paper put forward the Apriori algorithm analysis system for Apriori-frequent itemset mining algorithm.The algorithm used overlap strategy to reduce scanning databases,thereby algorithm achieved higher efficiency.Experimental results show that the efficiency of algorithm is 1~4 times than Apriori system.
作者 刘步中
出处 《计算机应用研究》 CSCD 北大核心 2012年第2期475-477,共3页 Application Research of Computers
关键词 数据挖掘 关联规则 频繁项集挖掘算法 data mining association rules Inter-Apriori
  • 相关文献

参考文献9

二级参考文献24

共引文献133

同被引文献236

引证文献31

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部