期刊文献+

交通场景中基于彩色视觉信息统计的背景建模

Background Modeling of Traffic Scene Based on Visual Color Information Statistics
在线阅读 下载PDF
导出
摘要 研究分析目前主流的背景建模方法,并针对动态交通场景中车辆目标持续运动,背景出现的概率较大的特点,提出一种基于彩色视觉信息统计的背景建模算法。实验结果表明,该算法可以较好地提取背景,并有效区分前景和背景。 Researches and analyses the current mainstream background modeling methods. Considering that vehicles are always moving in the dynamic traffic scene, and the background pixel appears frequently, proposes a background modeling method based on visual color information statistics which can better extract the statistical background and classify the foreground from the image frame.
出处 《现代计算机》 2011年第23期22-26,41,共6页 Modern Computer
关键词 背景建模:彩色视觉信息统计:目标检测 Background Modeling Visual Color Information Statistics Object Detection
  • 相关文献

参考文献6

  • 1C. Stauffer, W.E.L. Grimson. Adaptive Background Mixture Models for Real-Time Tracking. IEEE Conference on Com- puter Vision and Pattern Recognition[C]. 1999 : 246-252.
  • 2C. Stauffer, W.E.L. Grimson. Learning Patterns of Ac tivity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence[J],2000,22(8):747-757.
  • 3S. Kamijo, Y. Matsushita, K. Ikeuchi, M. Sakauchi. Traffic Monitoring and Accident Detection at Intersections[C]. Pro-ceedings of IEEE/IEEJ/JSAI International Conference on In- telligent Transportation Sytems, 1999:703-708.
  • 4Kim, K., et al. Real-Time Foreground-Background Segmen- tation Using Codebook Model[J]. Real-Time hnaging,2005, 11 (3):172-185.
  • 5侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 6Background Subtraction Program. http://www.umiacs.umd.edu/ -knkim/UMD-BGS/index.html.

二级参考文献25

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部