期刊文献+

自适应光学成像系统(MICRO/ZSC-1)活体测定正常人眼视锥细胞密度 被引量:1

In vivo measurements of cone photoreceptor density in normal human eyes based on images obtained with an adaptive optics imaging system (MICRO/ZSC-1)
原文传递
导出
摘要 目的 对视网膜自适应光学成像系统所得视锥细胞图像进行处理,获取正常人眼底不同区域视锥细胞密度,探讨自适应光学成像系统用于眼科临床实验研究的可行性.方法 横断面研究.利用自适应光学成像系统采集30例正常受试者不同区域视锥细胞图像,对图像进行处理获得正常人眼视网膜不同区域的视锥细胞密度,并采用回归分析法对不同区域的密度进行曲线估计.结果 随测量点与黄斑中心凹的距离增加,视锥细胞密度呈现出降低的趋势.偏离黄斑中心凹0.5°到3°范围内,随着偏离度的增加,视锥细胞密度从70 000个/mm2下降到16 000个/mm2.结论 自适应光学成像系统能够在活体人眼获取清晰的高分辨率视网膜图像,可能可以在眼科临床实验研究中发挥一定的作用. Objective To study a practical application in clinical ophthalmology studies by measuring cone photoreceptor density from processed images obtained with an adaptive optics imaging system.Methods This was a cross-sectional study.An adaptive optics imaging system was used to image the cones of 30 normal human eyes and the position of each cone within the sampling windows was manually digitized by the investigator.From these cone counts,the density of the cones was calculated for a set of fixed distances from the fovea at locations throughout the image,and the images were processed to obtain the cone photoreceptor density in different regions (nasal and temporal sides, superior and inferior sides).A regression analysis was used to estimate the cone photoreceptor density in different regions. Results Cone photoreceptor densities decreased from 70 000 cells/mm2 to 16 000 cells/mm2 from a retinal eccentricity of 0.5°to 3°.Overall, cell densities showed a tendency to decrease with deviation from the fovea. Conclusion Clear high-resolution retinal images from human eyes in vivo can be obtained with an adaptive optics imaging system.This system may play a role in ophthalmology based clinical trials.
出处 《中华眼视光学与视觉科学杂志》 CAS 2011年第6期419-422,共4页 Chinese Journal Of Optometry Ophthalmology And Visual Science
基金 国家863计划资助项目(2007AA04Z324) 重庆市攻关计划资助项目(CSTC,2010AB5118)
关键词 视锥(视网膜) 细胞计数 图像处理 计算机辅助 光学系统 自适应 Cones (retina) Cell count Image processing,computer-assisted Optics system,adaptive
  • 相关文献

参考文献14

  • 1姜文汉.自适应光学技术[J].自然杂志,2006,28(1):7-13. 被引量:83
  • 2凌宁,张雨东,饶学军,李新阳,王成,胡弈云,姜文汉.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158. 被引量:45
  • 3Wright AJ, Poland SP, Girkin JM, et al. Adaptive optics for enhanced signal in CARS microscopy. Opt Express,2007,15: 18209-18219.
  • 4Ahneh PK, Kolb H, Pflug R. Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol, 1987,255 : 18-34.
  • 5Osterberg G. Topography of the layer of rods and cones in human retina. Acta Ophthalmol, 1935,13 : 1-97.
  • 6Farber DB, Flannery JG, Lolley RN, et al. Distribution patterns of photoreceptors protein and cyclic-nucleotides in the human retina. Invest Ophthalmol Vis Sci,1985,26:1558-1568.
  • 7Miller WH, Bernard G. Averaging over the fovea receptor aperture curtiles aliasing. Vision Res, 1983,23 : 1365-1369.
  • 8Youdelis C, Hendricson. A qualitative and quantitative analysis of the human fovea during development. Vision Res,1986,26: 847-856.
  • 9Curcio CA, Sloan KR, Kalina RE, et ah Human photo- receptor topography. J Comp Neurol,1990,292:497-523.
  • 10Chui TYP, Song H,Burns SA. Individual variations in human cone photoreceptor packing density: variations with refractive error. Invest Ophthalmol Vis Sci,2008,49:4679-4687.

二级参考文献26

  • 1凌宁,张雨东,饶学军,李新阳,王成,胡弈云,姜文汉.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158. 被引量:45
  • 2Marcos S, Navarro R, Artal P. Coherent imaging of the cone mosaic in the living human eye. J Opt Soc Am A, 1996,13:897-905.
  • 3Miller DT, Williams DR, Morris GM, et al. Images of the cone photoreeeptors in the living human eye. Vision Res, 1996, 36:1067-1079.
  • 4Roorda A, Campbell MCW, Atkinson MR, et al. Confocal scanning laser ophthalmoscope for real-time photoreceptor imaging in the human eye. Vision Science and Its Applications, Technical Digest Series(Optical Society of America, Washington, DC), 1997,1:90-93.
  • 5MacNeil MA, Brown SP, Rockhill RL, et al. Retina Cell Mosaics and Neurotransmittens. In: Albert DM, Jokobiec FA. Principles and practice of Ophthalmology. 2nd ed. WB Saunders Company,2000. 1729-1745.
  • 6Guirao A, Redondo M, Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis,2000,17 : 1697-1702.
  • 7TYSON R.Principles of Adaptive Optics[M].Bostons:Academic Press,1991.
  • 8BABCOCK H W.The possibility of compensating astronomical seeing[M].Publication of the Astronomical Society of the Pacific,1953,65:229-236.
  • 9HARDYJ W.Adaptive Optics for Astronomical Telescope[M].New York:Oxford,1998.
  • 10姜文汉.现代仪器仪表技术与设计[M].北京:科学出版社,2003.1049-1114.

共引文献125

同被引文献23

  • 1江笑婵,万振凯,陈利.基于matlab边缘提取的几种方法的比较[J].电脑知识与技术,2006,1(1):138-138. 被引量:21
  • 2张小玲,邱曙东,陈艳炯,孙文涛.糖尿病性视网膜病变发病机制研究进展[J].国际眼科杂志,2005,5(6):1239-1242. 被引量:59
  • 3姜文汉.自适应光学技术[J].自然杂志,2006,28(1):7-13. 被引量:83
  • 4刘晨,张东.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,16(8):128-130. 被引量:14
  • 5陈宇;霍富荣;苗华.对比度拉伸在目标探测与识别中的应用研究[A]焦作,2008.
  • 6Mistlberger A,Liebmann JM,Greenfield DS. Heidelberg retina tomography and optical coherence tomography in normal,ocular-hypertensive,and glaucomatous eyes[J].{H}OPHTHALMOLOGY,1999,(10):2027-2032.
  • 7Zeimer R,Shahidi M,Mori M. A new method for rapid mapping of the retinal thickness at the posterior pole[J].{H}Investigative Ophthalmology & Visual Science,1996,(10):1994-2001.
  • 8Hee MR,Izatt JA,Swanson EA. Optical coherence tomography of the human retina[J].{H}Archives of Ophthalmology,1995,(03):325-332.
  • 9Curcio CA,Sloan KR,Kalina RE. Human photoreceptor topography[J].{H}Journal of Comparative Neurology,1990,(04):497-523.
  • 10Jonnal RS,Besecker JR,Derby JC. Imaging outer segment renewal in living human cone photoreceptors[J].{H}Opt Erpress,2010,(05):5257-5270.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部