期刊文献+

SnO_2纳米粒子作为SERS基底的研究 被引量:6

Surface-enhanced Raman Scattering of Molecules Adsorbed on SnO_2 Nanoparticles
在线阅读 下载PDF
导出
摘要 采用溶胶-水热法制备了不同尺寸的SnO2纳米粒子,并将其作为表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)活性基底,重点探讨了表面缺陷能级与SERS性能的关系.观察到4-巯基苯甲酸(4-MBA)吸附在150℃水热合成的SnO2纳米粒子上的SERS信号最强,随着在空气中煅烧温度的升高,SERS信号逐渐减弱.分别用透射电子显微镜、紫外-可见光谱、荧光光谱、X射线衍射和X射线光电子能谱对SnO2纳米粒子进行了表征.结果表明,SnO2纳米粒子的表面氧空位和缺陷等表面性质在增强拉曼散射性能中发挥着重要的作用,表面氧空位和缺陷等含量越高其SERS信号就越强. Pure SnO2 nanoparticles were prepared by the sol-hydrothermal method and were employed as surface-enhanced Raman scattering(SERS) active substrates.The relationships between defect levels and SERS effect of SnO2 nanoparticles were mainly investigated.The strongest SERS signals were observed when the 4-mercaptobenzoic acid molecules were adsorbed on the surface of SnO2 nanoparticles(hydrothermal pro-duct),with the increase of calcining temperature,the SERS signals became weaker.Transmission electron microscopy,UV-Vis diffuse reflectance spectroscopy,photoluminescence X-ray diffraction and X-ray photoelectron spectroscopy have been employed to investigate the SnO2 nanoparticles.The results indicated that surface properties of SnO2,such as surface defects and oxygen vacancies,etc,play important roles in the SERS.The higher is the content of surface defects and oxygen vacancies,the stronger is SERS signals.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第1期139-143,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20903044 20873050 20921003 20973074)资助
关键词 表面增强拉曼散射 SNO2 电荷转移 4-巯基苯甲酸 Surface-enhanced Raman scattering(SERS) SnO2 Charge transfer 4-Mercaptobenzoic acid
  • 相关文献

参考文献29

  • 1Stiles P. L., Dieringer J. A., Shah N. C., van Duyne R. P.. Annu. Rev. Anal. Chem.[J], 2008, 1: 601-626.
  • 2丁松园,吴德印,杨志林,任斌,徐昕,田中群.表面增强拉曼散射增强机理的部分研究进展[J].高等学校化学学报,2008,29(12):2569-2581. 被引量:62
  • 3Tian Z. Q.. J. Raman Spectrosc.[J], 2005, 36: 6-7.
  • 4赵冰,徐蔚青,阮伟东,韩晓霞.半导体纳米材料作为表面增强拉曼散射基底的研究进展[J].高等学校化学学报,2008,29(12):2591-2596. 被引量:10
  • 5Wang Y. X., Wang YF., Gao Y., Sun Z. H., Zhao C., Hu H. L., Xu W. Q., Wang Z. C., Zhao B.. Chem. Res. Chinese Universities[J]..2006, 22(3):388-389.
  • 6阮伟东,王春旭,纪楠,徐蔚青,赵冰.化学气相沉积法制备ZnO纳米结构薄膜及其SERS活性研究[J].高等学校化学学报,2007,28(4):768-770. 被引量:20
  • 7Wang Y. F., Ruan WD., Zhang J. H., Yang B., Xu W. Q., Zhao B., Lombardi J. R.. J. Raman Spectrosc.[J]..2009, 40:1072-1077.
  • 8Yang L. B., Ruan W. D., Jiang X., Zhao B., Xu W. Q., Lombardi J. R.. J. Phys. Chem. C[J], 2009, 113: 117-120.
  • 9Yang L. B., Jiang X., Ruan W. D., Zhao B., Xu W. Q., Lombardi J. R.. J. Phys. Chem. C[J], 2008, 112: 20095-20098.
  • 10Wang Y. F., Song W., Ruan W. D., Yang J. X., Zhao B., Lombardi J. R.. J. Phys. Chem. C[J], 2009, 113: 8065-8069.

二级参考文献188

共引文献92

同被引文献94

  • 1范吉阳,吴兴龙,邱腾.3C-SiC纳米颗粒量子限制效应的实验证据[J].物理,2005,34(8):570-572. 被引量:7
  • 2Fleisehman M. Chem. Phys. Lett. [J], 1974, 26(2) : 163-166.
  • 3Jeanmaire D. L. , van Duyne R. P.. J. Electroanal. Chem. [J], 1977, 84(1) : 1-20.
  • 4Nie S. , Emory S. R.. Science[J], 1997, 275(5303) : 1102-1106.
  • 5Kneipp K. , Wang Y. , Kneipp H. , Perelman L. T. , Itzkan I. , Dasari R. , Feld M. S.. Phys. Rev. Lett. [J], 1997,78(9): 1667- 1670.
  • 6Campion A. , Kambhampati P.. J. Chem. Soc. Rev. [J], 1998, 27(4) : 241-250.
  • 7Ling X. , Li W. , Song Y. , Yang Z. , Xu Y. , Weng S. , Xu Z. , Fu X. , Zhou X. , Wu J.. Spectroscopy and Spectral Analysis [ J ], 2000, 20(5) : 692-693.
  • 8Rowe I. E. , Chank C. V.. Phys. Rev. Lett. [J] , 1980, 44:1770-1773.
  • 9Gi X., Dong J.. An. Chem. [J], 1991,63(20): 2393-2397.
  • 10Chen L. , Han X. X. , Yang J. X. , Zhou J. , Lu Z. C. , Song W. , Zhao B. , Xu W. Q. , Ozaki Y.. Chem. Res. Chinese Universities [J], 2011,27(4): 683-687.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部