摘要
该文研究了复射影空间中具有平坦法丛一般子流形的曲率性质与几何性质之间的关系.利用活动标架法,得到关于截面曲率,Ricci曲率和第二基本形式模长的刚性定理,推广和完善了已有文献的相关结果.
In this paper, the authors study the relation between properties on curvature and geometry of generic submanifolds with flat normal bundle in a complex projective space. By using the moving-frame method, the rigidity theorems on sectional curvature, Ricci curvature and the length of second fundamental form are obtained, which generalize and improve some results in the relevant literatures.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2011年第6期1626-1632,共7页
Acta Mathematica Scientia
基金
安徽省教育厅自然科学研究重点项目(KJ2008A05ZC)
高等学校优秀青年人才资金项目(2011SQRL021ZD)资助
关键词
复射影空间
一般子流形
平坦法丛.
Complex projective space
Generic submanifold
Flat normal bundle