期刊文献+

基于支持向量机的水资源安全评价 被引量:16

Water resources security assessment based on support vector machine
在线阅读 下载PDF
导出
摘要 支持向量机以统计学习理论为基础,采用结构风险最小化准则,将学习问题转化为一个凸二次规划问题,能够得到全局最优解,适合解决小样本、非线性分类及回归问题。根据水资源安全的内涵,筛选出具有代表性的指标,组成水资源安全评价指标体系。建立了基于支持向量机的水资源安全评价模型,将安全标准划分为良好、安全、临界、不安全、危险5个等级。根据水资源安全评价标准及所属评价等级值,随机生成样本集,180个样本作为训练样本,构造了5个两类支持向量分类器,20个样本作为检验样本,检验样本分类全部正确。将模型应用于山西省11个城市的水资源安全评价,结果表明,该方法是有效、可行的。 Based on statistical learning theory,support vector machine(SVM) can transform the learning process into a convex quadratic planning problem to get a global optimization by using the rule of structure risk minimization,which is appropriate to solving small sample,nonlinear classification and regression. Based on the concept of water resources security,representative indicators were selected for the water resources security assessment indicator system.Water resources assessment model based on support vector machine was established.Water resources security standards were divided into five grades,named good,safe,critical,not safe and dangerous.Sample sets were formed by stochastic method according to water resources security standards and their grade values.180 samples were used for training to construct 5 two-classification support vector classifiers.Twenty samples were used for testing and all of which can be classified correctly.Applying the model to 11 cities in Shanxi Province,the results show that the algorithm is reasonable and feasible.
出处 《自然灾害学报》 CSCD 北大核心 2011年第6期167-171,共5页 Journal of Natural Disasters
基金 教育部国家外国专家局111创新引智计划(B08039) 全球环境基金(GEF)(MWR-9-2-1)
关键词 统计学习理论 支持向量机 模式分类 水资源安全 statistical learning theory support vector machine pattern classification water resources security
  • 相关文献

参考文献9

二级参考文献35

  • 1宋松柏,蔡焕杰.区域水资源可持续利用评价的人工神经网络模型[J].农业工程学报,2004,20(6):89-92. 被引量:62
  • 2时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 3徐文,王大忠,周泽存,陈珩.人工神经网络在变压器特征气体法故障诊断中的应用[J].高电压技术,1996,22(2):27-30. 被引量:26
  • 4左东启,戴树声,袁汝华,李鸿业,芮孝芳.水资源评价指标体系研究[J].水科学进展,1996,7(4):367-373. 被引量:127
  • 5Yan Weiwu,Shao Huihe.Application of support vector machine nonlinear classifier to fault diagnoses[A].In:Proceeding of the 4th World Congress Intellengen Control and Automtion[C].Shanghai,China:2002:2697~2670.
  • 6Jack L B,Nandi A K.Fault detection using support vector machines and artificial neural networks,augmented by genetic algorithms[J].Mechanical Systems and Signal Processing,2002,16(2-3):373-390.
  • 7Tay Francis E H,Cao Lijuan.Application of support vector machines in financial time series forecasting[J].Omega,2001,29(4):309-317.
  • 8Chan W C,Chan C W,Cheung K C,et al.On the modelling of nonlinear dynamic systems using support vector neural networks[J].Engineering Applications of Artificial Intelligence,2001,14:105-113.
  • 9Cortes C,Vapnik V.Support-vector,networks[J].Machine Learning,1995,20(1):273-295.
  • 10Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.

共引文献163

同被引文献183

引证文献16

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部