期刊文献+

瞬时受体电位M8离子通道对冷刺激诱导气道上皮细胞炎症反应的影响 被引量:7

Effects of transient receptor potential melastatin 8 cation channels on inflammatory reaction induced by cold temperatures in human airway epithelial cells
原文传递
导出
摘要 目的探讨瞬时受体电位M8离子通道(TRPM8)在冷刺激诱导气道上皮细胞产生炎性因子过程中发挥的作用及相关信号转导机制。方法用冷空气(18℃)刺激人气道上皮16HBE细胞,以TRPM8通道特异性拮抗剂BCTC、TRPM8shRNA及蛋白激酶C(PKC)特异性抑制剂钙磷酸蛋白C为干预手段,将细胞分为对照组(37℃培养)、冷刺激组、冷刺激+BCTC组、冷刺激+转染TRPM8 shRNA组、冷刺激+转染对照shRNA组、冷刺激+钙磷酸蛋白C组。Western blot法检测TRPM8 shRNA转染对16HBE细胞合成TRPM8蛋白的干扰效率;钙离子成像技术测量前5组细胞内每10s间隔的相对Ca^2+浓度动态变化;ELISA法检测各组细胞分泌的白细胞介素(IL)-6、IL-8、肿瘤坏死因子(TNF)-α蛋白含量;实时荧光定量PCR检测各组细胞中IL-6、IL.8、TNF-α mRNA表达水平。结果冷刺激组细胞内相对Ca^2+浓度最高值为2.36±0.24,显著高于对照组的1.01±0.02(t=12.52,P〈0.01),冷刺激+BCTC组、冷刺激+转染TRPM8 shRNA组细胞内相对Ca^2+浓度降为1.47±0.17和1.26±0.12,显著低于冷刺激组(t值分别为6.69、9.12,均P〈0.01);冷刺激组的IL-6、IL-8、TNF-α的mRNA和蛋白含量分别为0.66±0.16、0.77±0.15、0.73±0.09、(92±13)ng/L、(125±22)ng/L、(88±12)ng/L,较对照组[0.37±0.08、0.32±0.07、0.48±0.10、(52±8)ng/L、(50±9)ng/L、(61±8)ng/L]显著升高(t值分别为3.20、5.36、3.36、5.24、6.26、3.74,均P〈0.05),冷刺激+BCTC组[分别为0.42±0.09、0.52±0.13、0.52±0.12、(72±8)ng/L、(92±14)ng/L、(68±11)ng/L]、冷刺激+转染TRPM8 shRNA组[分别为0.41±0.10、0.49±0.08、0.50±0.08、(60±12)ng/L、(89±14)ng/L、(68±11)ng/L]、冷刺激+钙磷酸蛋白C组[分别为0.40±0.07、0.44±0.09、0.47±0.08、(69±9)ng/L、(86±15)ng/L、(61±10)ng/L]较冷刺激组显著降低(均P〈0.05);冷刺激+转染对照shRNA组[分别为0.61±0.10、0.69±0.11、0.64±0.13、(89±13)ng/L、(118±20)ng/L、(79±13)ng/L]与冷刺激组比较差异无统计学意义(t值分别为0.48、0.79、1.12、0.35、0.43、1.00,均P〉0.05)。结论冷空气可通过激活气道上皮细胞上的TRPM8离子通道而诱导Ca^2+内流进而激活下游PKC信号通路,进而导致代表性炎性因子的表达及生成增多。 Objective To explore the role of transient receptor potential melastatin 8 cation channels(TRPM8) in cold-induced production of inflammatory factors in airway epithelial cells and related signal transduction mechanism. Methods The 16HBE human airway epithelial cells were stimulated with cold temperature (18 ℃). In intervention experiments, cells were pretreated with TRPM8 channel antagonist BCTC, protein kinase C (PKC) specific inhibitor calphostin C and transfected with TRPM8 shRNA or control shRNA respectively, and thereafter cold stimulation was applied. Ceils were divided into 6 groups : a control group ( incubated at 37 22 ) , a cold stimulation group, a cold stimulation + BCTC group, a cold stimulation + TRPM8 shRNA group, a cold stimulation + control shRNA group, a cold stimulation + calphostin C group. Western blot was performed to show the extent of knockdown in TRPM8 protein expression in the TRPM8 shRNA transfected cells. Dynamics of relative concentration of intracellular Ca^2+ in the former 5 groups were measured by calcium imaging techniques. Images were taken at one frame per 10 seconds. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α mRNA and protein were detected by real-time PCR and ELISA respectively. Results The highest relative concentration of intracellular calcium in cold stimulation group (2. 36 + O. 24) was higher than that of control group ( 1.01 ±0. 02) (t = 12. 52, P 〈 0. 01 ). BCTC and TRPM8 shRNA reduced intracellular calcium ( 1.05 ±0. 09, 1.08 -0. 09), compared with single cold stimulation group(t =6. 69 and 9. 12 , all P 〈0. 01 ). IL-6,IL-8, TNF-α mRNA and protein in cold stimulation group[0. 66 ±0. 16,0. 77 ±0. 15,0. 73 ±0. 09 and(92 ±13) ng/L, (125 ±22 )ng/L, (88 ±12)ng/L ] were significantly higher than those in control group [ 0. 37 ± 0.08,0.32 ±0.07,0.48 ±0. 10 and(52 ±8) ng/L, (50 ±9) ng/L, (61 ±8)ng/L] (t =3.20 -6.26, all P 〈 0.05 ). IL-6 mRNA, IL-8 mRNA, TNF-α mRNA and protein in cold stimulation + BCTC group [0. 42 ±0. 09,0. 52 ±0. 13,0. 52 ±0. 12 and(72 ±8) ng/L, (92 ±14) ng/L, (68 ±11) ng/L], cold stimulation + TRPM8 shRNA group [ 0. 41 ±0. 10,0. 49 ±0. 08,0. 50 ±0. 08 and (60 ±12) ng/L, ( 89 + 14) ng/L, ( 68 + 11 ) ng/L ] and cold stimulation + calphostin C group [ 0. 40 ±0. 07,0. 44 ±0. 09,0.47 ±0. 08 and (69 ±9) ng/L, ( 86 ±15 ) ng/L, ( 61 ±10) ng/L ] were significantly lower than those in cold stimulation group(t =2.47 -4. 21, all P 〈0. 05). IL-6 mRNA,IL-8 mRNA,TNF-α mRNA and protein in cold stimulation + control shRNA group [0. 61 ±0. 10,0. 69 ±0. 11,0. 64 ±0. 13 and(89 ±13) ng/L, (118 ±20)ng/L, (79 + 13 )ng/L] showed no significant change, compared with cold stimulation group (t = 0. 35 - 1.12, all P 〉 0. 05 ). Conclusion Cold temperature may induce Ca^2+ influx and up-regulate IL-6, IL-8, and TNF-α expression in 16HBE cells by activating the TRPM8 ion channels, and this is via a signaling pathway involving PKC.
出处 《中华结核和呼吸杂志》 CAS CSCD 北大核心 2011年第10期757-761,共5页 Chinese Journal of Tuberculosis and Respiratory Diseases
基金 国家自然科学基金(81070031) 国家自然科学基金中俄国际合作项目(81011120108) 中俄政府间合作项目(2009:13-01)
关键词 瞬时受体电位通道 蛋白激酶C 白细胞介素6 白细胞介素8 肿瘤坏死因子-α Transient receptor potential channels Protein kinase C Interleukin-6 Interleukin-8 Tumor necrosis factor-alpha
  • 相关文献

参考文献14

  • 1Koskela HO. Cold air-provoked respiratory symptoms : the mechanisms and management. Int J Circumpolar Health, 2007, 66:91-100.
  • 2Davis MS, Malayer JR, Vandeventer L, et al. Cold weather exercise and airway cytokine expression. J Appl Physiol, 2005, 98:2132-2136.
  • 3Bautista DM, Siemens J, Glazer JM, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007, 448:204-208.
  • 4杜晶,张励才.TRPM8的研究进展[J].中国药理学通报,2008,24(9):1135-1138. 被引量:5
  • 5Sabnis AS, Shadid M, Yost GS, et al. Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am J Respir Cell Mol Biol, 2008, 39:466-474.
  • 6Sabnis AS, Reilly CA, Veranth JM, et al. Increased transcription of cytokine genes in human lung epithelial ceils through activation of a TRPM8 variant by cold temperatures. Am J Physiol Lung Cell Mol Physiol, 2008, 295 :L194-L200.
  • 7Liu B, Qin F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4, 5-bisphosphate. J Neurosci, 2005, 25:1674-1681.
  • 8Daniels RL, Takashima Y, McKemy DD. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4, 5-bisphosphate. J Biol Chem. 2009, 16,284 : 1570-1582.
  • 9邬海桥,李琪,周向东.茶黄素和表皮生长因子受体对气道黏液分泌的影响[J].中华结核和呼吸杂志,2009,32(1):27-32. 被引量:8
  • 10钟甜,尤列·皮尔曼,维克多·科罗索夫,周向东.张力敏感性阳离子通道在机械牵张引起气道黏液高分泌中的作用[J].中华医学杂志,2010,90(33):2328-2333. 被引量:13

二级参考文献47

  • 1孙倩,罗非.“感觉”凉爽的TRPM8受体[J].生理科学进展,2006,37(3):204-204. 被引量:4
  • 2李琪,周向东.中性粒细胞弹力蛋白酶引起黏蛋白5AC高表达的信号转导机制[J].中华医学杂志,2007,87(5):348-352. 被引量:23
  • 3Kim S, Schein AJ, Nadel JA. E-cadherin promotes EGFR- mediated cell differentiation and MUCSAC mucin expression in cultured human airway epithelial ceils. Am J Physiol Lung Cell Mol Physiol, 2005, 289:L1049-L1060.
  • 4Ganguly C, Saha P, Panda CK, et al. Inhibition of growth, induction of apoptosis and alteration of gene expression by tea polyphenols in the highly metastatic human lung cancer cell line NCI-H460. Asian Pac J Cancer Prey, 2005, 6:326-331.
  • 5Rogers DF. Physiology of airway secretion and pathophysiology of hypersecretion. Respir Care, 2007,52 : 1134- 1146.
  • 6Kohri K, Ueki IF, Shim JJ, et al. Pseudomonas aeruginosa induces MUC5AC production via epidermal growth factor receptor. Eur Respir J, 2002,20 : 1263-1270.
  • 7Deshmukh HS, Case LM, Wesselkamper SC, et al. Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. AM J Respir Crit Care Med, 2005, 171:305-314.
  • 8Hewson CA, Edbrooke MR, Johnston SL. PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1- dependent mechanisms. J Mol Biol,2004, 344:683-695.
  • 9Song JS, Cho KS, Yoon HK, et al. Neutrophil elastase causes MUC5AC mucin synthesis via EGF receptor, ERK and NF-kB pathways in A549 cells. Korean J Intern Med, 2005, 20:275- 283.
  • 10Mizuno H, Cho YY, Zhu F, et al. Theaflavin-3, 3 ' -digallate induces epidermal growth factor receptor downregulation. Mol Carcinog, 2006,45:204-212.

共引文献20

同被引文献63

  • 1陈敏,孙丽新,张陆勇.大鼠辣椒素受体的重组[J].山西医科大学学报,2007,38(9):773-776. 被引量:1
  • 2Seys S F, Daenen M, Dilissen E, et al. Effects of high altitude and cold air exposure on airway inflammation in patients with asthma [ J ]. Thorax, 2013, 68(10) : 906 -913.
  • 3Donaldson G C, Goldring J J, Wedzicha J A. Influence of season on exacerbation characteristics in patients with COPD[ J]. Chest, 2012, 141(1) : 94 -100.
  • 4Sarria I, Ling J, Xu G Y, et al. Sensory discrimination between innoc- uous and noxious cold by TRPM8-expressing DRG neurons of rats[ J]. Mol Pain, 2012, 8: 79.
  • 5Almaraz L, Manenschijn J A, de-la-Pena E, et al. TRPM8 [ J]. Handb Exp Pharrnacol, 2014, 222 : 547 - 579.
  • 6Grace M S, Dubuis E, Birrell M A, et al. Pre-clinical studies in cough research : role of Transient Receptor Potential (TRP) channels [ J ]. Pulm Pharmacol Ther, 2013, 26(5): 498-507.
  • 7Yudin Y, Rohacs T. Regulation of TRPM8 channel activity [ J ]. Mol Cell Endocrinol, 2012, 352(1/2) : 68 -74.
  • 8Sabnis A S, Shadid M, Yost G S, et al. Human lung epithelial ceils express a functional cold-sensing TRPM8 variant[J]. Am J Respir Cell Mol Biol, 2008, 39(4) : 466 -474.
  • 9Grace M S, Baxter M, Dubuis E, et al. Transient receptor potential (TRP) channels in the airway: role in airway disease [ J ]. Br J Phar- macol, 2014, 171(10) : 2593 -2607.
  • 10Kuhn F J, Witsehas K, Kuhn C, et al. Contribution of the S5-pore- $6 domain to the gating characteristics of the cation channels TRPM2 and TRPM8[J]. J Biol Chem, 2010, 285(35) : 26806 -26814.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部