期刊文献+

基于最小二乘支持向量机的氨法烟气脱硫装置脱硫效率预测 被引量:7

Efficiency Prediction for an Ammonia Flue Gas Desulphurization System Based on Least Squares-support Vector Machine
在线阅读 下载PDF
导出
摘要 针对如何提高氨法烟气脱硫装置脱硫效率的预测精度,建立了以烟气量、喷淋浆液密度、液气比、喷淋塔pH值、预洗涤塔pH值和浓缩槽pH值为输入变量,以脱硫效率为输出量的最小二乘支持向量机(LS-SVM)脱硫效率的预测模型,并运用这一模型对某135 MW机组氨法烟气脱硫装置的脱硫效率进行了预测评判.结果表明:与传统的支持向量机模型进行比较,LS-SVM模型预测结果的最大误差只有传统模型的14%左右;LS-SVM模型所得预测值与实际值的误差小于5%,完全在工程所允许的误差范围之内,模型是可行的. In order to improve the prediction precision desulfurization efficiency of an ammonia flue gas desulphurization system,a least squares-support vector machine(LS-SVM) model has been established for efficiency prediction purposes,which takes following parameters as the input variables,such as the flue gas flow rate,the slurry density,the liquid-gas ratio,the pH values respectively in spraying tower,pre-washing tower and in concentration basin,and the desulfurization efficiency as the output variable.The newly built model has been applied for efficiency prediction of the flue gas desulfurization system in a 135 MW unit.Results show that the new model is proved to be applicable.Compared with traditional SVM model,the maximum predicted error of new model is only 14% of the traditional one,and the predicted error against actual measurements is less than 5%,which is completely within the permitted range of engineering application.
出处 《动力工程学报》 CAS CSCD 北大核心 2011年第11期846-850,共5页 Journal of Chinese Society of Power Engineering
关键词 锅炉烟气 脱硫效率 最小二乘支持向量机 预测 误差分析 boiler flue gas desulphurization efficiency LS-SVM prediction error analysis
  • 相关文献

参考文献7

二级参考文献22

  • 1周祖飞.燃煤电厂烟气脱硫系统的运行优化[J].浙江电力,2008,27(5):39-42. 被引量:19
  • 2王雷,章明川,谢广录,韩向新,顾明言.喷雾干燥烟气脱硫技术的数值模拟[J].动力工程,2005,25(3):416-421. 被引量:20
  • 3韩璞,毛新静,周黎辉,焦嵩鸣.湿法烟气脱硫中强制氧化系统的机理建模[J].华北电力大学学报(自然科学版),2006,33(5):60-63. 被引量:6
  • 4巩文科,李心广,赵洁.基于BP神经网络与专家系统的故障诊断系统[J].计算机工程,2007,33(8):199-200. 被引量:18
  • 5Jian-Da Wu, Chiu-Hong Liu. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[ J ]. Expert Systems with Applications, 2009,36 ( 1 ) : 5 424-5 431.
  • 6张毅.电站锅炉燃烧优化控制理论及应用研究[D].北京:清华大学,2006.
  • 7Smola A J, Scholkope B. A tutorial on support vector regression[J]. Statistics and Computing, 2004,14:199 - 222.
  • 8Zheng L G, Zhou H, Wang C L, et al. Combing support vector regression and ant colony optimization to reduce NOx emissions in coal fired utility boilers [J]. Energy and Fuels, 2008, 22: 1034-1040.
  • 9Vapnik V N. Statistical Learning Theory [M]. New York: J Wiley, 1998.
  • 10Vapnik V N. The Nature of Statistical Learning Theory [M].New York: Springer Verlag, 1999.

共引文献169

同被引文献101

引证文献7

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部