期刊文献+

情境化信息推荐机制的研究 被引量:21

Research Review of Contextual Recommendatioin Mechanism
在线阅读 下载PDF
导出
摘要 传统推荐服务能够推荐给用户个性化的信息,因此在解决信息过载方面具有极大优势,但动态变化的“晴境”对用户选择信息产品或服务的决定也可能产生重要影响,随着移动商务的迅猛发展,这种影响越来越显著。因此近来情境化信息推荐机制研究引起了广泛的关注,成为新的热点。本文综合评述了情境化信息推荐机制的研究现状,主要介绍机制的形式化定义、基于情境的推荐模式分类、不同模式下推荐机制实现的关键问题、实现技术以及推荐机制的评测研究,着重评述国外近期研究成果的特色、优缺点,最后给出未来可能的研究方向。 Traditional Recommendatioin Service can offer customers with personalized information, so has the great advantage to conquer "information overload", but the dynamic "context" may have much influence on customers when they decide to choose information products or services. With rapid development of Mobile Commerce, such infulence showing more and more obviously, so Contextual Recommendation Mechanism research attract extensive attention. This paper makes a comprehensive survey of Contextual Recommendation Mechanism research. First, formally describe the Contextual Recommendation Mechanism, introduce the category of recommendation modes based on context, then the key problems and implementation techniques along with the implementation of Recommendation Mechanism based on different modes and the evaluation of Recommendation Mechanism are exhibited, emphasizing the characteristics, disadvantages and advantages of foreign current research works, finally the future directions are proposed.
出处 《情报学报》 CSSCI 北大核心 2011年第10期1053-1064,共12页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目--微内容生产加工模式及其支持平台的研究(71071066) 国家自然科学基金重点项目--移动商务的基础理论与技术方法研究(70731001).
关键词 信息推荐 情境 移动商务 述评 information recommendation, context, mobile commerce, review
  • 相关文献

参考文献50

二级参考文献148

  • 1龙君伟,徐琴美.人的自我调节机制述评[J].山东师范大学学报(人文社会科学版),2000,45(1):59-64. 被引量:15
  • 2周国韬.自我调节学习论──班杜拉学习理论的新进展[J].外国教育研究,1995(3):1-3. 被引量:56
  • 3冯震.学科学习中自我调节的社会认知观[J].外国教育资料,1994(1):39-46. 被引量:5
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.

共引文献766

同被引文献244

引证文献21

二级引证文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部