期刊文献+

聚合物自写入光波导的时域有限差分模拟 被引量:2

Finite-Difference Time-Domain Simulation of Polymer Self-Written Waveguide
原文传递
导出
摘要 利用时域有限差分方法,对非线性光学聚合物SU-8环氧树脂在激光作用下,其折射率会升高的过程进行了数值模拟与分析,得到SU-8薄膜与激光作用一定时间之后,其内部折射率的分布。分别对表面是平面及表面带有微透镜的SU-8薄膜进行了模拟。结果表明,利用折射率升高引起的自聚焦效应,可以在SU-8薄膜内自写入波导;写入的波导以自聚焦焦点为分界点,分为锥形波导和柱形波导。写入的波导长度随着与激光作用时间的增加而增长;在与激光相同的作用时间里,表面带有微透镜的SU-8薄膜,与表面是平面的SU-8薄膜相比,锥形波导的旁瓣更收敛,写入的波导长度更长;在微透镜底面半径保持不变以及曝光时间一定时,微透镜冠高与底面半径比例为0.08时比比例为0.24时写入的波导长度要长12.2%,其中锥形波导部分要长19.2%。 SU-8 epoxy resin is a kind of polymer material of nonlinear optical properties.It is ultraviolet sensitive and its refractive index increases because of the photopolymerization.Finite-difference time-domain method is employed to simulate the process of photopolymerization,and the inner distribution of refractive index of SU-8 film is obtained.Both the process in the plane thin film and the thin film with a microlens are simulated.It is concluded that self-focusing effect which results from the refractive index change leads to the formation of self-written waveguide.The self-written waveguide consists of two continuous parts,one is cone and the other is cylinder.The length of the self-written waveguide increases with the time of exposure.Given the same exposure time,cone part in the SU-8 film with a microlens is more convergent than that without a microlens,and the length of the self-written waveguide in the SU-8 film with a microlens is longer than that without a microlens.The length of the self-written waveguide decreases with the increase of the ratio of the height to the basal diameter,given the same exposure time and a constant basal diameter of the microlens.The length of the self-written waveguide with the ratio 0.08 is 12.2% longer than that with the ratio 0.24,and the cone part with the ratio 0.08 is 19.2% longer than that with the ratio 0.24.
出处 《光学学报》 EI CAS CSCD 北大核心 2011年第10期199-204,共6页 Acta Optica Sinica
基金 国家自然科学基金(61072131) 新世纪优秀人才计划(NCET-07-0319) 中央高校基本科研业务费资助(HUST:2010MS069)资助课题
关键词 光学器件 自写入光波导 时域有限差分 自聚焦 SU-8环氧树脂 optical devices self-written waveguide finite-difference time-domain self-focusing SU-8 epoxy resin
  • 相关文献

参考文献18

  • 1温昌礼,季家镕,窦文华,宋艳生.集成电路用聚合物光波导材料[J].激光与光电子学进展,2009,46(7):36-40. 被引量:9
  • 2吕广才,胡国华,恽斌峰,陆志远,陈金明,崔一平.含氟聚酰亚胺有机聚合物波导的制备[J].电子器件,2007,30(3):752-754. 被引量:5
  • 3高原,张晓霞,廖进昆.有机聚合物非对称弯波导分析与优化[J].光学学报,2011,31(2):91-96. 被引量:3
  • 4洪建勋,徐凯,周立民,周建新,陈水平,李成军,吴友宇,陈伟.电光聚合物波导中的锥形结构[J].光学学报,2009,29(10):2686-2691. 被引量:6
  • 5Y. Hanada, K. Sugioka, K. Midorikawa. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing[J]. Opt. Express, 2010, 18(2): 446~450.
  • 6W. H. Wong, E. Y. B. Pun. Polymeric waveguide wavelength filters using electron-beam direct writing[J]. Appl. Phys. Lett., 2001, 79(22): 3576~3578.
  • 7U. Streppel, P. Dannberg, C. W. Chter et al.. Formation of micro-optical structures by self-writing processes in photosensitive polymers[J]. Appl. Opt., 2003, 42(18): 3570~3579.
  • 8Tetsuzo Yoshimura, Kazuyuki Wakabayashi. Self-organization of optical z-connections in three-dimensional optical circuits simulated by the finite difference time domain method[C]. SPIE, 2011, 7944: 79440R.
  • 9李凤,陈四海,赖建军,周一帆,高益庆.自写入光波导聚合物微透镜阵列的设计与制作[J].中国激光,2011,38(3):197-202. 被引量:10
  • 10S. Shoji, S. Kawata, A.A. Sukhorukov et al.. Self-written waveguides in photopolymerizable resins[J]. Opt. Lett., 2002, 27(3): 185~187.

二级参考文献91

共引文献54

同被引文献37

  • 1O. Painter, R. K. Lee, A. Scherer et al.. Two-dimensional photonic band-gap defect mode laser [J]. &'ience, 1999, 284(5421): 1819-1821.
  • 2K. Nozaki, S. Kita, T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser[J]. Opt. E3"press, 2007, 15 (12) : 7506--7514.
  • 3J. K. Hwang, H. Y. Ryu, D. S. Song et al.. Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1. 6 μm[J]. IEEE Photon. Technol. Lett., 2000, 12(10): 1295-1297.
  • 4M. Notomi, H. Suzuki, T. Tamamura. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonie band gaps [J]. Appl. Phys. Lett., 2001, 78(10) : 1325.
  • 5B. H. Ahn, J. H. Kang, M. K. Kim et al.. One-dimensional parabolic beam photonic crystal laser[J]. Opt. Express, 2010, 18(6) : 5654-5660.
  • 6Q. Quan, I. B. Burgess, S. K. Y. Tang et al.. High-Q, low index-contrast polymeric photonic crystal nanobeam eavities[J]. Opt. Express, 2011, 19(22): 22191-22197.
  • 7W. Frank, P. B. Deotare, M. W. McCutcheon et al.. Programmable photonic crystal nanobeam cavities [J]. Opt. Express, 2010, 18(8): 8705-8712.
  • 8Y. Zhang, M. Khan, Y. Huang et al.. Photonic crystal nanobeam lasers[J]. Appl. Phys. Lett., 2010, 97(5): 051104.
  • 9E. Kuramochi, H. Taniyama, T. Tanabe et al.. Ultrahigh Q one dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings[J]. Opt. Exgress, 2010, 18(15): 15859-15869.
  • 10M. Notomi, E. Kuramochi, H. Taniyama. Ultrahigh Q nanocavity with 1D photonic gap [J]. Opt. Express, 2008, 16(15) : 11095-11102.

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部