期刊文献+

基于BFGS拟牛顿算法的含噪数字字符识别

Recognition of numeric characters with noise based on BFGS quasi-Newton algorithm
在线阅读 下载PDF
导出
摘要 针对传统数字字符识别算法收敛速度慢且有可能陷入局部极小值等问题,提出了将BFGS拟牛顿算法应用于含噪数字字符识别:构造前馈型神经网络,调用Matlab神经网络工具箱中的训练函数trainbfg对网络进行训练.该算法收敛速度快、识别精度高,能够对含有一定噪声的数字字符进行识别,具有广阔的应用前景. The traditional numeric character recognition algorithm which has slow convergence speed and might fall into the local minimum.To solve such problems,the BFGS quasi-Newton algorithm was presented that was applied to the recognition of numeric characters.First,a feed-forward neural network was set up,then network was trained by calling trainbfg on Matlab.The algorithm has high accuracy,fast convergence,can recognize the numeric characters with noise efficiently,so it has broad application prospects.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2011年第4期79-81,共3页 Journal of Zhengzhou University of Light Industry:Natural Science
关键词 数字字符识别 神经网络 BFGS拟牛顿算法 MATLAB numeric character recognition neural network BFGS quasi-Newton algorithm Matlab
  • 相关文献

参考文献7

二级参考文献18

  • 1陈先锋,舒志兵,赵英凯.“弹性”BP神经网络在识别带有噪声字母中的应用[J].计算机仿真,2005,22(9):153-155. 被引量:13
  • 2从爽.面向MatLab工具箱的神经网络理论与应用[M].中国科学技术大学出版社.1998:53-70.
  • 3四维科技,胡小锋,赵辉.VisualC++/MatLab图像处理与识别实用案例精选[M].人民邮电出版社,2004:196-227
  • 4楼顺天,施阳.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社.2002.
  • 5M.T.Hagan,H.B.Demuth.Neural Network Desig -n.PWS publishing company[J].Boston,1996:67.
  • 6蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2003.39-54.
  • 7张宏林,蔡锐.Visual C++数字图像识别技术及工程实践[M].北京:人民邮电出版社,2003.422—442.
  • 8SHINHA D, DOUGHERTY E R. Fuzzy athematical morphology [ J ]. J Vision Communication and Imagine and Representation, 1992,3(3): 286 - 302.
  • 9YANG Yi-bing, YAN Hong. An adaptive logical method for binarization of degraded document images[J ], Pattern Recognition,2000,33: 787 - 807.
  • 10HAGAN M T, MENHAJ M B. Training feedforward networkswith the Marquardt algorithm[J ]. Neural Networks, 2001, 5: 989-993.

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部