期刊文献+

B(H)上完全保立方幂零算子的可加映射 被引量:1

Additive maps of completely preserving cube-zero operators on B(H)
在线阅读 下载PDF
导出
摘要 刻画了无限维复Hilbert空间上完全保立方幂零算子的可加映射.采用矩阵与算子理论的方法,证明了这样的映射是同构或(复情形)共轭同构. Additive maps on complex infinite dimensional Hilbert spaces completely preserving cube-zero operators are characterized.By using the method of the theory of matrix and operator,it is proved that these maps are isomorphism or(in the complex case) conjugate-isomorphism.
出处 《纺织高校基础科学学报》 CAS 2011年第2期201-202,208,共3页 Basic Sciences Journal of Textile Universities
基金 太原科技大学博士科研启动基金资助项目(20082024)
关键词 HILBERT空间 立方幂零算子 可加映射 完全保持问题 同构 Hilbert space cube-zero operators additive maps completely preserver problems isomorphisms
  • 相关文献

参考文献5

  • 1黄丽,路召飞,李俊林.标准算子代数上完全保斜幂等性的可加映射[J].中北大学学报(自然科学版),2011,32(1):71-73. 被引量:6
  • 2黄丽,侯晋川.标准算子代数上完全保可逆性或零因子的映射[J].山西大学学报(自然科学版),2009,32(1):5-8. 被引量:7
  • 3Jinchuan Hou,Li Huang.Maps completely preserving idempotents and maps completely preserving square-zero operators[J]. Israel Journal of Mathematics . 2010 (1)
  • 4HOU Jinchuan,HUANG Li.Characterizing isomorphisms in terms of completely preserving invertibility or spectrum. Journal of Mathematical Analysis and Applications . 2009
  • 5Z. F. Bai,J. C. Hou.Linear maps and additive maps that preserve operators annihilated by a polynomial. Journal of Mathematical . 2002

二级参考文献5

  • 1JianLianCUI,JinChuanHOU.A Characterization of Homomorphisms Between Banach Algebras[J].Acta Mathematica Sinica,English Series,2004,20(4):761-768. 被引量:4
  • 2任芳国,黄建科.缺项算子矩阵的逆补[J].西北大学学报(自然科学版),2006,36(2):173-175. 被引量:7
  • 3HOU J,CUI J. Additive Maps on Standard Operator Algebras Preserving Invertibilities or Zero Divisors[J]. Lin Alg Appl, 2003,359 : 219-233.
  • 4HADWIN D W, LARSON D R. Completely Rank-nonincreasing Linear Maps[J]. J Funct Anal, 2003,199:210-227.
  • 5CUI J, HOU J. Linear Maps on Von Neumann Algebras Preserving Zero Products or Tr-rank[J]. Bull Austral Math Soc, 2002,65:79-91.

共引文献10

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部