期刊文献+

微分进化算法研究及其在热工过程参数辨识中的应用 被引量:5

Modified Differential Evolution Algorithm and Its Application in Thermal Process Model Identification
在线阅读 下载PDF
导出
摘要 被控对象的数学模型,对控制系统的设计和分析有着极为重要的意义。采用微分进化算法对被控对象参数进行辨识。这种算法与其它进化算法的不同之处在于它的变异算子是由种群中任意选取的多对向量的差值得到的,并且主要用于实参数优化问题。微分进化算法虽然有简单、搜索效率高的特点,但是仍存在局部最优的问题。因此,在对微分进化算法搜索机理进行分析的基础上,针对其参数难以动态调整的问题对算法进行改进,提出了不依赖于优化问题的控制参数自适应调整机制,进一步提高微分进化算法的全局搜索能力和寻优速度。为验证算法有效性,在MATLAB上编制相应的模型辨识程序,对被控对象数学模型进行辨识、调试运行,并对寻优结果进行对比。 The mathematical model of the controlled object in power plant is of significance to the design and analysis of the thermal control system.A differential evolution algorithm(DE) based on stochastic optimization approach was presented.Based on analyzing DE searching mechanism,the improved differential evolution algorithm with self-adaptive parameters can promote its robust,optima searching capability and speed.In order to prove the effectiveness of the improved differential evolution algorithm,the relevant model identifying program on MATLAB to and identify the mathematical models was worked out and the result was compared.
作者 刘长良 于明
出处 《化工自动化及仪表》 CAS 北大核心 2011年第3期269-273,共5页 Control and Instruments in Chemical Industry
基金 国家"863"计划(2007AA041106)
关键词 模型辨识 微分进化算法 参数自适应调整 仿真分析 model identification differential evolution algorithm improved differential evolution algorithm with self-adaptive parameters simulation analysis
  • 相关文献

参考文献9

  • 1刘长良,于希宁,姚万业,刘吉臻.基于遗传算法的火电厂热工过程模型辨识[J].中国电机工程学报,2003,23(3):170-174. 被引量:68
  • 2Wu Z F,Huang H K,Yang B et al.A Modified Differential Evolution Algorithm with Self-adaptive Control Parameters[J].Proceedings of the ISKE,2008,1:524- 527.
  • 3Liu J,Lampinen J.On Setting the Control Parameter of the Differential Evolution Method[J].Soft Computering,2002:155 - 166.
  • 4Brest J,Greiner S,Boskovic B et al.Self-Adapting Control Parameters in Differential Evolution:A comparative Study on Numerial Benchmark Problems[J].Evolution Computation,IEEE Transactions,2006,10(3):646 -657.
  • 5刘自发,张建华.一种求解电力经济负荷分配问题的改进微分进化算法[J].中国电机工程学报,2008,28(10):100-105. 被引量:56
  • 6Guang Y Y,Zhao Y D,Kit P W.A Modified Differential Evolution Algorithm With Fitness Sharing for Power System Planning[J].Power Systems,IEEE Transactions,2008,23 (2):514 - 522.
  • 7Gao Y L,Liu J.A Modified Differential Evolution Algorithm and Its Application in the Training of BP Neural Network[C].Advanced Intelligent Mechatronics,IEEE/ASME International Conference,2008:1373 - 1377.
  • 8Zhang X X,Chen W R,Dai C H.Self-adaptive Differential Evolution Algorithm for Reactive Power Optimization[J].Natural Computation.Fourth International Conference,2008,6:560 - 564.
  • 9方崇智 萧德云.过程辨识[M].北京:清华大学出版社,1998.133-201.

二级参考文献23

  • 1毛亚林,张国忠,朱斌,周明.基于混沌模拟退火神经网络模型的电力系统经济负荷分配[J].中国电机工程学报,2005,25(3):65-70. 被引量:43
  • 2王爽心,韩芳,朱衡君.基于改进变尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95. 被引量:27
  • 3王剑奇,张伯明,赵子臣.动态比较法确定机组的最优组合[J].中国电机工程学报,1996,16(4):254-256. 被引量:22
  • 4[4]Michalewicz, et al. Genetic algorithms and optimal control problem [R].Proc.of 29th IEEE Conf. On Decision and Control, 1990,1664-1666.
  • 5Farag A, Al-Baiyat S, Cheng T. Economic load dispatch multiobjective optimization procedures using linear programming techniques [J]. IEEETrans. on Power Systems, 1995, 10(2): 731-738.
  • 6Rabin A, Alun H, Brian J. A homogenous linear programming algorithm for the security constrained economic dispatch problem [J]. IEEETrans. on PowerSystems, 2000, 15(3): 930-936.
  • 7Fan J, Zhang L. Real-time economic dispatch with line flow and emission constrains using quadratic programming[J]. IEEE Trans. on Power Application Software, 1998, 13(2): 320-325.
  • 8Ross D, Kim S. Dynamic economic dispatch of generation[J]. IEEE Trans. on PowerApplicationSoftware, 1980, 9(9): 2060-2068.
  • 9David C, Gerald B. Genetic algorithm solution of economic dispatch with valve point loading[J]. IEEETrans. on Power Systems, 1993, 8(3): 1325-1332.
  • 10Lee Z. Particle swarm optimization to solving the economic dispatch considering the generator constraints[J]. IEEE Trans. on Power Systems, 2003, 18(3). 1187-1195.

共引文献155

同被引文献66

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部