期刊文献+

On weakly S-embedded subgroups of finite groups 被引量:3

On weakly S-embedded subgroups of finite groups
原文传递
导出
摘要 Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given. Let H be a subgroup of a group G.Then H is said to be S-quasinormal in G if HP = P H for every Sylow subgroup P of G;H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H.In this paper,we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H ∩ T≤H SE,where H SE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G.Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.
出处 《Science China Mathematics》 SCIE 2011年第9期1899-1908,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.10771172,11001226) Postgraduate Innovation Foundation of Southwest University (Grant Nos. ky2009013,ky2010007)
关键词 finite groups weakly S-embedded subgroups the generalized Fitting subgroups supersolublegroups p-nilpotent groups Sylow子群 嵌入式 有限群 拟正规子群 黄金分割 HSE 群结构
  • 相关文献

参考文献26

  • 1SHUM Kar Ping,SKIBA Alexander N..On solubility and supersolubility of some classes of finite groups[J].Science China Mathematics,2009,52(2):272-286. 被引量:10
  • 2W. Guo,K. P. Shum,A. N. Skiba.X-quasinormal subgroups[J]. Siberian Mathematical Journal . 2007 (4)
  • 3Yangming Li,Yanming Wang,Huaquan Wei.The influence of $\pi$-quasinormality of some subgroups of a finite group[J]. Archiv der Mathematik . 2003 (3)
  • 4Ayesha Shaalan.The influence of π-quasinormality of some subgroups on the structure of a finite group[J]. Acta Mathematica Hungarica . 1990 (3-4)
  • 5Prof. Joseph Buckley.Finite groups whose minimal subgroups are normal[J]. Mathematische Zeitschrift . 1970 (1)
  • 6Otto H. Kegel.Sylow-Gruppen und Subnormalteiler endlicher Gruppen[J]. Mathematische Zeitschrift . 1962 (1)
  • 7Asaad M.On maximal subgroups of finite groups. Communications in Algebra . 1998
  • 8Ballester-Bolinches A,Ezquerro L M,Skiba A N.Subgroups of finite groups with a strong cover-avoidance property. Bulletin of the Australian Mathematical Society . 2009
  • 9Guo W B,Shum K P,Skiba A N.X-semipermutable subgroups of finite Groups. Journal of Algebra . 2007
  • 10Li Y M,Wang Y M.The influence of minimal subgroups on the structure of a finite group. Proceedings of the American Mathematical Society . 2002

二级参考文献1

共引文献9

同被引文献4

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部