期刊文献+

用于图像分割的局部区域能量最小化算法 被引量:27

Algorithm of Minimizing Local Region Energy for Image Segmentation
在线阅读 下载PDF
导出
摘要 针对点对马尔可夫随机场(Pairwise MRF)模型中像素成对交互的结构不能充分描述图像丰富的局部统计特征问题,在研究Pairwise MRF模型基础上,提出了一种基于局部区域能量最小化的图像分割算法.该算法先利用图像局部区域信息构造局部区域能量模型,建立了一种局部交互的区域马尔可夫随机场分割模型,然后采用无环置信传播(LBP)算法对MRF全局能量进行优化.优化过程中,对局部区域能量进行收敛并按照MAP准则估计局部区域标号,通过LBP算法把局部区域信息传递到邻域区域中去.实验结果表明,所提出的新算法较标准LBP算法具有更好的分割结果,并有效地抑制了图像噪声信号和纹理信号对分割结果的干扰和影响. An algorithm of minimizing local region energy is proposed based on pairwise Markov random fields (MRF) model to solve the problem that the pairwise interactions fails to capture the rich statistical features of images. The proposed algorithm utilizes local region information to construct a local region energy model and a local interaction region MRF model for image segmentation. The loopy belief propagation (LBP) algorithm is applied to minimize the MRF global energy. The optimization makes local region energy converge, and the label is estimated based on MAP criterion. Then the local region information is transferred to adjacent region through LBP algorithm. Experimental results show that the proposed algorithm generates more accurate segmentation results than the standard LBP algorithm does on both synthetic and natural images, and also can efficiently restrain effect of image noise and texture for segmentation.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第8期7-12,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60972146) 陕西省教育厅专项基金资助项目(2010JK640)
关键词 图像分割 无环置信传播算法 局部区域能量 马尔可夫随机场 image segmentatiom loopy belief propagation algorithm~ local region energy~ Markovrandom field
  • 相关文献

参考文献12

  • 1POTETZ B, LEE T S. Efficient belief propagation for higher order cliques using linear constraint nodes [J].Computer Vision and Image Understanding, 2008, 112 (1) :39-54.
  • 2TANAKA M, OKUTOMI M. Locally adaptive learning for translation-variant MRF image priors [C]// [EEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2008 : 1-7.
  • 3杨艺,韩崇昭,韩德强.一种多源遥感图像分割的融合新策略[J].西安交通大学学报,2010,44(6):88-92. 被引量:6
  • 4CHEN A Y C, CORSO J J, WANG Le. HOPS: Efficient region labeling using higher order proxy neighborhoods [C]//Proceedings of International Conference on Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2008 : 1-4.
  • 5WANG Xiaofeng, ZHANG Xiaoping. A new localized superpixel Markov random field for image segmentation [C]//Proceedings of 2009 IEEE Conference Multimedia and Expo. Piscataway, NJ, USA: IEEE, 2009 :642-645.
  • 6JIA Jianhua,JIAO Licheng,CHANG Xia Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China/Institute of Intelligent Information Processing,Xidian University,Xi’an 710071,Shaanxi,China.Image Segmentation via Mean Shift and Loopy Belief Propagation[J].Wuhan University Journal of Natural Sciences,2010,15(1):43-50. 被引量:5
  • 7CHEN Jiansheng, SU Guangda, HE Jinping, et al. Face image relighting using locally constrained global optimization [C] // Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 44-57.
  • 8LI S Z. Markov random field modeling in computer vision [M]. New York, USA: Springer-Verlag, 2001.
  • 9YEDIDIA J, FREEMAN W, WEISS Y. Generalized belief propagation [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2000:689-695.
  • 10SHI Jianbo, MALLK J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 888- 905.

二级参考文献45

  • 1LOMBARDO P,OLIVER C J,PELLIZZERI T M,et al.A new maximum likelihood joint segmentation technique for multitemporal SAR and multiband optical images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2500-2518.
  • 2POHL C,VAN GENDEREN J L.Multisensor image fusion in remote sensing concepts,methods and applications[J].International Journal of Remote Sensing,1998,19(5):823-854.
  • 3BURT P J,KOLCZYNSKI R J.Enhanced image capture through fusion[C] // Proceedings of IEEE 4th International Conference on Computer Vision.Piscataway,NJ,USA:IEEE,1993:173-182.
  • 4BENEDIKTSSON J A,SWAIN P H.Consensus theoretic classification methods[J].IEEE Transactions on Systems,Man and Cybernetics,1992,22(4):688-704.
  • 5SARKAR A,BISWAS M K,KARTIKEYAN B,et al.A MRF model-based segmentation approach to classification for multispectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2002,4(5):1102-1113.
  • 6GEMAN S,GEMAN D.Stochastic relaxation,Gibbs distribution and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 7LI S Z.Markov random field modeling in computer vision[M].New York,USA:Springer-Verlag,2001.
  • 8SUK M,CHUNG S.A new segmentation technique based on partition mode test[J].Pattern Recognition,1983,16(5):469-480.
  • 9OSBERGER W,MAEDER A J.Automatic identification of perceptually important regions in an image[C] //Proceedings of IEEE 14th International Conference on Pattern Recognition.Los Alamitos,CA,USA:IEEE Computer Society,1998:701-704.
  • 10Choi H and Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans. on Image Processing, 2001, 10(9): 1309-1321.

共引文献16

同被引文献264

  • 1余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17
  • 2李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 3SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011.
  • 4ZHANG Xiayi,LIU Fuqiang,LI Zhipeng.An im- proved foreground object detection method based on Gaussian mixture models [ C] // Proceedings of 2010 International Conference on Multimedia Communica- tions.Piscataway,NJ,USA: IEEE,2010: 90-93.
  • 5GUAN Yepeng.Spatio-temporal motion-based fore- ground segmentation and shadow suppression [J].IET Computer Vision,2010,4(1) : 50-60.
  • 6KAEWTRAKULPONG P,BOWDEN R.An im-proved adaptive background mixture model for real- time tracking with shadow detection[C]///Proceedings of 2nd European Workshop on Advanced Video-Based Surveillance Systems.Dordrecht,Netherlands..Kluw- er Academic Publishers,2001: 149-158.
  • 7KIM K,CHALIDABHONGSE T H,HARWOOD D,et al.Real-time foreground-background segmentation using codebook model [J].Real-Time Imaging,2005,11(3): 172-185.
  • 8GALLEGO J,PARDAGRAVES M.Enhanced Bayes-ian foreground segmentation using brightness and color distortion region-based model for shadow removal [C] //Proceedings of 17th IEEE International Conference on Image Processing.Piscataway,NJ,USA: IEEE,2010: 3449-3452.
  • 9LIU Zhigang,ZHAO Fei,YANG Hua.A new meth od of moving shadow elimination combining texture and chrominance of moving foreground region based on criterion [C] // Proceedings of 8th World Congress on Intelligent Control and Automation.Piscataway,NJ,USA: IEEE,2010: 6282-6286.
  • 10PORIKLI F,TUZEL O.Bayesian background model- ing for foreground detection [C] // Proceedings of the third ACM International Workshop on Video Surveil lance & Sensor Networks.New York,USA: ACM,2005:55 58.

引证文献27

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部