期刊文献+

双互易杂交边界点法参数及域内节点分布

Parameter and arrangement of domain nodes for dual reciprocity hybrid boundary node method
在线阅读 下载PDF
导出
摘要 为了解决双互易杂交边界点法推广应用中存在的障碍和缺点,如自由参数过多、域内节点数量及分布无规律可循等缺点,选取不同的有代表性的算例,分别研究双互易杂交边界点法自由参数的选择、自由参数与精度之间的关系、域内节点的布置数量和位置与精度之间的关系等.通过理论分析和数值实验得出:子域半径的较佳取值为0.85,子域半径与形状参数的最佳比值为1.0~1.3;当域内节点数量与边界节点数量接近时,计算效率达到最大;域内节点宜较多地布置在平行于梯度大的方向上. The dual reciprocity hybrid boundary node method(DHBNM) has some disadvantages,such as too many free parameters and no rule for number and location for domain nodes.Some related studies about the choose of free parameters of DHBNM,the relations between free parameters and precision and the number and location of domain nodes were conducted by choosing some representative examples in order to solve the problems of DHBNM.The theoretical results and the numerical results show that the radius of subdomain is 0.85,and the ratio between radius of subdomain and shape parameter is chosen as 1.0 to 1.3.The calculation efficiency arrive the maximum when domain node number is equal to boundary node number.Domain node is arranged parallel to the high gradient direction.
作者 樊志华
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第7期1265-1268,共4页 Journal of Zhejiang University:Engineering Science
关键词 无网格法 双互易杂交边界点法 自由参数 域内节点 meshless method dual reciprocity hybrid boundary node method(DHBNM) free parameter domain node
  • 相关文献

参考文献12

  • 1LUCY L B. A numerical approach to the testing of the fission hypothesis [J].The Astron J, 1977, 8 (12) : 1013 - 1024.
  • 2BELYTSCHKO T, I.U Y Y, GU L. Element-free Galerkin methods [J]. International Journal for Numerical Method in Engineering, 1994, 37(2) : 229 256.
  • 3ATLURI S N, ZHU T L. A new meshless local Petrov Galerkin (MLPG) approach in computational mechanics [J].Computational Mechanics, 1998, 22(2) : 117 - 127.
  • 4杨红坡,谢新宇,张继发,谢康和.弹塑性土质边坡再生核质点法分析[J].浙江大学学报(工学版),2006,40(3):490-493. 被引量:4
  • 5李重视,闫丹丹,朱善安,Bin He.基于无网格有限元方法的心磁场计算仿真研究[J].浙江大学学报(工学版),2010,44(3):463-467. 被引量:2
  • 6Zhang Jianming, Yao Zhenhan.ANALYSIS OF 2-D THIN STRUCTURES BY THE MESHLESS REGULAR HYBRID BOUNDARY NODE METHOD[J].Acta Mechanica Solida Sinica,2002,15(1):36-44. 被引量:8
  • 7ZHANG J M, MASATAKA T, TOSHIRO M. Meshless analysis of potential problems in three dimensions with the hybrid boundary node method [J]. Journal for Numerical Methods in Engineering, 2004, 59(9): 1147-1168.
  • 8MUKHERJEE Y X, MUKHERJEE S. The boundary node method for potential problems[J]. Journal for Numerical Methods in Engineering, 1997, 40(5) : 797 - 815.
  • 9YAN F, MIAO Y, YANG Q N. Quasilinear hybrid boundary node method for solving nonlinear problems [J]. CMES-Computer Modeling in Engineering and Science, 2009, 46(1): 21- 50.
  • 10YAN F, WANG Y H, THAM L G, et al.Dual reci procity hybrid boundary node method for 2 D elasticity with body force [J]. Engineering Analysis with Boundary Elements, 2008, 32(9): 713-725.

二级参考文献33

  • 1郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388. 被引量:1059
  • 2Miao Yu,Wang Yuanhan,Jiang Heyang.AN IMPROVED HYBRID BOUNDARY NODE METHOD IN TWO-DIMENSIONAL SOLIDS[J].Acta Mechanica Solida Sinica,2005,18(4):307-315. 被引量:5
  • 3苗雨,王元汉.三维弹性问题无网格分析的奇异杂交边界点方法[J].应用数学和力学,2006,27(5):597-604. 被引量:17
  • 4苗雨,王元汉.MESHLESS ANALYSIS FOR THREE-DIMENSIONAL ELASTICITY WITH SINGULAR HYBRID BOUNDARY NODE METHOD[J].Applied Mathematics and Mechanics(English Edition),2006,27(5):673-681. 被引量:1
  • 5GREENSITE F. Heart surface electrocardiographic inverse solutions modeling and imaging of bioelectric activity., principles and applications [M ]. New York : Kluwer/Plenum. 2004.
  • 6HE B. Electrocardiographic tomographic imaging modeling and imaging of bioelectric activity: principles and applications[M]. New York: Kluwer/ Plenum, 2004.
  • 7HE B, MUSHA T, OKAMOTO Y, et al. Electric dipole tracing in the brain by means of the boundary element method and its solution accuracy [J].IEEE Trans Biomed Eng, 1987, 34:406 -414.
  • 8AOKI M, OKAMOTO Y, MUSHA T, et al. Three- dimensional simulation of the ventricular depolarization and repolarization processes and body surface potenrials: normal heart and bundle branch block[J]. IEEE Trails Biomed Eng, 1987, 34(6): 454.
  • 9ZHANG Ying chun, ZHU Shan-an, HE B. A highorder finite element algorithm for solving the three-dimensional EEG forward problem [J].Phys Med Biol, 2004, 49:2975 - 2987.
  • 10HAUEISEN J, RAMON C, EISELT M, et al. Influence of tissue resistivities on neuromagnetic fields and eletric potentials studied with a finite element model of the head [J]. IEEE Trans Biomed Eng, 1997, 44(8): 727 - 735.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部