期刊文献+

齿隙非线性输入系统的迭代学习控制 被引量:11

Iterative Learning Control of a Class of Nonlinear Systems with Input Backlash
在线阅读 下载PDF
导出
摘要 针对一类具有输入齿隙特性的非线性系统,提出一种实现有限作业区间轨迹跟踪的迭代学习控制方法.在系统不确定项可参数化的情形下,基于类Lyapunov方法设计迭代学习控制器,回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求.对未知时变参数进行泰勒级数展开,参数估计采用微分学习律,并在控制器设计中,采用双曲函数处理级数展开后的余项以及齿隙特性里的有界误差项,以保证控制器可导,且可抑制颤振.引入一级数收敛序列确保系统输出完全跟踪期望轨迹,且闭环系统所有信号有界. In this paper, an iterative learning control method is presented for a class of time-varying nonlinear systems with input backlash. In the circumstance of parameterized nonlinear uncertainties, unknown time-varying parameters are expanded into Taylor series and differential learning mechanisms are used to handle non-global Lipschitz nonlinearities in system dynamics. In the controller design, hyperbolic tangent function is introduced to eliminate the influence of the remaining term and the bounded error term due to input backlash, and simultaneously to guarantee the differentiability of the controller and suppress the chattering. Through Lyapunov-like synthesis and with the aid of a convergent series, the complete tracking over a pre-specified time interval is achieved and boundedness of all the signals in the closed-loop system is ensured.
出处 《自动化学报》 EI CSCD 北大核心 2011年第8期1014-1017,共4页 Acta Automatica Sinica
基金 国家自然科学基金(60474005,60774021,60874041)资助~~
关键词 迭代学习控制 齿隙 非线性时变系统 有限区间 Iterative learning control, backlash, time-varying nonlinear systems, finite interval
  • 相关文献

参考文献19

  • 1Tao G, Kokotovic P V. Adaptive control of plants with un- known dead-zone. IEEE Transactions on Automatic Control, 1994, 39(1): 59-68.
  • 2Pachter M, Miller R B. Manual flight control with saturat- ing actuators. IEEE Control Systems Magzine, 1998, 18(1): 10-20.
  • 3Tao G, Kokotovic P V, Adaptive control of systems with backlash. Automatica, 1993, 29(2): 323-335.
  • 4Tao G, Kokotovic P V, Adaptive control of plants with un- known hysteresis. IEEE Transactions on Automatic Control, 1995, 40(2): 200-212.
  • 5Tustin A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems. Jour- nal of the Institution of Electrical Engineers Part IIA: Automatic Regulators and Servo Mechanisms, 1947, 94(1): 143-151.
  • 6Grundelisu M, Angeli D. Adaptive control of systems with backlash acting on the input. In: Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan: IEEE, 1996, 4689-4694.
  • 7Tao G, Ma X, Ling Y. Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica, 2001, 37(2): 165-176.
  • 8Mata-Jimenez M T, Brogliato B, Goswami A. On the con- trol of mechanical systems with dynamic backlash. In: Pro- ceedings of the 36th Conference on Decision and Control. Washington D. C., USA: IEEE, 1997, 1990-1995.
  • 9Gerdes J C, Kumar V. An impact model of mechanical back- lash for control system analysis. In: Proceedings of American Control Conference. Seattle, USA: IEEE, 1995. 3311-3315.
  • 10Tao C, Kokotovic P V. Continuous-time adaptive control of systems with unknown backlash. IEEE Transactions on Automatic Control, 1995, 40(6): 1083-1087.

二级参考文献41

  • 1Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robotics by learning [J]. J of Robotic Systems, 1984, 1(2): 123-140.
  • 2Xu J X, Tan Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties[J]. IEEE Trans on Automatic Control, 2002, 37(11): 1940-1945.
  • 3Kosmatopoulos E B, Polycarpou M M. Hign-order neural network structures for identification of dynamical systems[J]. IEEE Trans on Neural Networks, 1995, 6 (2) : 422-431.
  • 4Ge S S, Hang C C, Zhang T. A direct method for robust adaptive nonlinear control with guaranteed transient performance[J]. System & Control Letters, 1999, 37(5): 275-284.
  • 5Recker D, Kokotovic P, Rhode D. Adaptive nonlinear control systems containing a dead zone [C]. Proe of 30th IEEE Conf on Decision and Control. Brighton, 1991: 2111-2115.
  • 6Tao G, Kokotovic V. Adaptive control of plants with unknown dead-zones[J]. IEEE Trans on Automatic Control, 1994, 39(1): 59-68.
  • 7Jang J O. A deadzone compensator for a DC motor system using fuzzy logic control [J]. IEEE Trans on Systems, Man and Cybernatics, 2001, 31(1): 42-47.
  • 8Lewis F L, Tim W K, Wang L Z, et al. Dead-zone compensation in motion control systems using adaptive fuzzy logic control[J]. IEEE Trans on Control Systems Technology, 1999, 7(6): 731-741.
  • 9Selmie R R, Lewis F L. Dead-zone compensation in motion control systems using neural networks [J]. IEEE Trans on Automatic Control, 2000, 45(4): 602- 613.
  • 10Wang X X, Su C Y, Hong H. Robust adaptive control of a class of nonlinear systems with unknown dead-zone[J]. Automatica, 2004, 40(3): 407-413.

共引文献34

同被引文献83

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部