期刊文献+

基于分类的分布式压缩感知算法

Based on Compression Algorithm, Deferring the Schema
在线阅读 下载PDF
导出
摘要 在无线传感器网络中,压缩感知是一种新兴的数据融合方法,能利用少量数据采样进行数据恢复。由于具有较好的节省能耗的性质,压缩感知受到研究人员越来越多的关注。然而,传统的应用于无线传感器网络中压缩感知方法是在汇聚节点得到所有节点的加权和。然后利用重构算法对整个网络中各节点的数据进行恢复,并没有考虑到网络节点的分布式的特性。因此,当网络拓扑较复杂时.应用压缩感知时数据需要传输的次数并不会低于利用最短路径树时数据需要传输的次数。在该文中,我们考虑如何将压缩感知技术更好的和网络节点的分布式结构相结合.使得该技术的更加符合无线传感器网络的需求。 In wireless sensor network, compressive sensing is a novel idea of data fusion, which only uses a small amount of data sampling for data recovery. As its advantage of energy saving, compressive sensing is attracting more and more attention of researchers. However, traditional compressive sensing in wireless sensor network is to get a weighted sum in the sink node and then recover the data of the whole network by reconstruction algorithm, which do not consider the feature of distributed in the network. Thus, the transmission times in compressive sensing will not be less than that in the SPT, when the topology of the network is complex. In this paper, we consider how to combine the compressive sensing and the distribution of nodes, which will make this technology more fit for wireless sensor network.
作者 潘澔 PAN Hao (Soochow University, Suzhou 215009, China)
出处 《电脑知识与技术》 2011年第7期4650-4653,共4页 Computer Knowledge and Technology
关键词 无线传感器 压缩感知 Wireless sensor Comoressive sensing
  • 相关文献

参考文献13

  • 1Tropp J A, Gilbert A C.Signal recovery from random measurments via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
  • 2Luo Chong, Wu Feng, Sun Jun and Chen Chang Wen. Compressive data gathering for large-scale wireless sensor networks. In Pro- ceedings of the Annual International Conference on Mobile Computing and Networking, pages 145-156, September. 2009.
  • 3D. L. Donoho. Compressed sensing. In IEEE Transactions on Information Theory, Apr. 2006.
  • 4G. Shen and A. Ortega. Transform-based distributed data gathering. In IEEE Transactions on Signal Processing.
  • 5Huang Yinghui and Li Guanyu. Descriptive models for Internet of things. In ICICIP, part 2, pages 483-486, August. 2010.
  • 6J. Chou, D. Petrovic, and K. Ramchandran. A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks. In Proc. of IEEE Infocom, pages 1.054 - 1062, Mar. 2003.
  • 7R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated data gathering. In Proc. of IEEE Infocom, volume 4, pages 2571-2582, Mar. 2004.
  • 8K. Yuen, B. Liang, and B. Li. A distributed framework for correlated data gathering in sensor networks. In IEEE Trans. on Vehicular Technology, 2008,57(1):578-593.
  • 9A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari. Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm. In Proc. of IPSN, pages 309-316, 2006.
  • 10Akkaya Kemal, Demirbas and Murat. The impact of data aggregation on the performance of wireless sensor networks. In Wireless Com- munications and Mobile Computing, Volume 8, pages 575-578, February. 2008.

二级参考文献35

  • 1Hesham Abusaimeh.Balancing the Power Consumption Speed in Flat and Hierarchical WSN[J].International Journal of Automation and computing,2008,5(4):366-375. 被引量:3
  • 2吴亦川,黄奎,郑健平,孙利民,程伟明.一种自适应的健壮TCP/IP报头压缩算法[J].计算机研究与发展,2005,42(4):655-661. 被引量:9
  • 3郭利,马彦恒,张锡恩.一种多传感器数据时空融合估计算法[J].系统工程与电子技术,2005,27(12):2016-2018. 被引量:5
  • 4周新运,孙利民,皇甫伟,牛建伟.无线多媒体传感器网络中一种自适应的报头压缩机制[J].软件学报,2007,18(5):1122-1129. 被引量:14
  • 5Nakamura E F,Loureiro P A F,Frery P C.Information fusion for wireless sensor networks:methods,models,and classifica-tionsD].ACM Computing Surveys,2007,39(3):1-55.
  • 6Krishnamaehari B,Estrin D,Wieker S.The Impact of data aggregation in wireless sensor networks[C]//The 22nd International Conference on Distributed Computing Systems Workshops.Vienna,Austria:IEEE Press,2002:575-578.
  • 7Madden S R,Franklin M J,Hellerstein J M,et al.TinyDB:an acquisitional query processing system for sensor networks[J].ACM Transactions on Database Systems,2005,30(1):122-173.
  • 8Zhang Wen-sheng,Cao Guo-hong.DCTC:dynamic convoy tree-based collaboration for target tracking in sensor networks[J].IEEE Transactions on Wireless Communications,2004,3(5):1689-1701.
  • 9Luo Hong,Liu Yong-he,Sajal K D.Routing correlated data with fusion cost in wireless sensor networks[J].IEEE Transactions on Mobile Computing,2006,5(ll):1620-1632.
  • 10Luo Hong,Luo Jun,Liu Yong-he,et al.Adaptive data fusion for energy efficient routing in wireless sensor networks[J].IEEE Transactions on Computers,2006,55(10):1286-1299.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部