期刊文献+

推荐系统中显式评分输入的用户聚类方法研究 被引量:9

Aggregation method of recommender systems with way of sparse matrix reduction by sociality structure
在线阅读 下载PDF
导出
摘要 从推荐系统的矩阵稀疏性问题出发,在保证推荐的覆盖率基础上,借助社区密度的思想并通过矩阵约简来提高推荐的准确率。运用归一化处理的用户评分矩阵对一致性的评分矩阵进行了改造,并借助社区的概念通过矩阵调整得到了一种基于用户相似评分偏好的聚类分析结果;通过构造社区网络结构图得到社区密度,并选择其中的最大值作为聚类中心,运用紧致与分离性效果函数验证了聚类结果的可靠性。该方法的提出,在不损害已有信息的基础上降低了计算复杂度,通过Movielens的数据检验了该方法在一定程度上的正确性和有效性。 Started in the sparse matrix of recommender systems,and ensured the recommended coverage rate.Based on the idea of sociality density,improved the accuracy by matrix reduction.With the user ratings matrix which had been normalized,transformed the consistency score matrix.Meanwhile,with the concept of sociality,got an aggregation analysis result based on user similarity score preferences through adjusting the matrix.Computed the sociality densities by constructing a sociality network diagram.Selected the maximum as the cluster centers,and used the compact and separation effect functions to validate the reliability of aggregation results.Compared to other method,the method reduces the computational complexity.Meanwhile,with the test of Movielens,the method is accuracy and effectiveness in a certain degree.
作者 崔春生
出处 《计算机应用研究》 CSCD 北大核心 2011年第8期2856-2858,共3页 Application Research of Computers
关键词 推荐系统 聚类分析 社区网络 稀疏矩阵 recommender systems aggregation analysis sociality network sparse matrix
  • 相关文献

参考文献5

二级参考文献122

  • 1熊馨,王卫平,叶跃祥.电子商务个性化产品推荐策略研究[J].科技进步与对策,2005,22(7):163-165. 被引量:16
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献689

同被引文献81

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部