期刊文献+

关于两种REV尺度多孔介质LBM模型的讨论 被引量:2

Discussion on Two REV LBM Models for Fluid Flow in Porous Media
在线阅读 下载PDF
导出
摘要 通过多尺度展开方法分析了Freed和Guo分别提出的两种多孔介质LBM模型对应的宏观方程。分析表明,两种模型均存在一定的人工多余项,相较而言Guo模型更加精确。对于稳态不可压流动来讲,两种模型基本等价。通过数值模拟证明了这一结论。 Multi-scale expansion was used to analyze the macroscopic equation of two LBM models for flow in porous media,which were introduced by Freed and Guo et.al.separately.It is shown that both the macroscopic equations of the two models involve certain artificial parts compared with governing equation of fluid flow in porous media.Moreover,Guo's model is more precise.The two models are equivalent when dealing with steady state,uncompressible flow.This is also demonstrated through numerical modeling.
作者 雷鸣
出处 《科学技术与工程》 2011年第20期4814-4820,共7页 Science Technology and Engineering
关键词 多孔介质 格子玻尔兹曼方法 多尺度展开 porous media lattice Boltzmann method multi-scale expansion
  • 相关文献

参考文献21

  • 1Shan X W, Chen H D. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993 ;47 (3) : 1815--1819.
  • 2Shan X W, Doolen G. Mt~lticomponent Lattice-Bohzmann model with interparticle interaction. 1ournal of Statistical Physics, 1995 ;81 (1 - 2) :379--393.
  • 3Shan X W, Chen H D. Simulation of nonideal gases and liquid-gas phase transitions by the Lattice Boltzmann equation. Physical ReviewE, 1994;49(4):2941--2948.
  • 4Swift M R, Orlandini E. Osbom W R, et ol. Lattice Boltzmann simu- lations of liquid-gas and binary fluid systems. Physical Review E, 1996 ; 54 ( 5 ) : 5041--5052.
  • 5Alexander F J, Chen S, Sterling J D. Lattice Boltzmann thermo- hydrodynamics. Physical Review E, 1993 ;47 (4) :2249.
  • 6Chen S Y, Wang Z, Shah X W,et al tional fluid dynamics in 3 dimensions. 1992;68(3 -4) : 379-400.
  • 7Lattice Boltzmann computa- Journal of Statistical Physics, Mei R, Luo L S, Shyy W. An accurate curved boundary treatment in the Lattice Bohzmann method. Journal of Computational Physics, 1999 ; 155 (2) :307--330.
  • 8Lallemand P, Luo L S. Lattice Boltzmann method for moving bounda- ries. Journal of Computational Physics, 2003 ;184(2) :406---421.
  • 9He X Y, Luo L S, Dembo M. Some progress in lattice Boltzmann method . 1. Nonuniform mesh grids. Journal of Computational Phys- ics, 1996;129(2) :357--363.
  • 10Yu D Z, Mei R W, Shyy W. A multi-block lattice Bohzmann meth- od for viscous fluid flows. International Journal for Numerical Meth- ods in Fluids, 2002;39(2) :99--120.

共引文献2

同被引文献74

  • 1XUYou-Sheng,ZHONGYi-Jun,HUANGGuo-Xiang.Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J].Chinese Physics Letters,2004,21(7):1298-1301. 被引量:5
  • 2蔡睿贤,苟晨华,张娜.多孔介质中考虑各向异性自然对流Brinkman模型的解析解(Ⅱ)[J].中国科学(G辑),2005,35(2):113-120. 被引量:4
  • 3SUCCI S, BENZI R, MASSAIOLI E A review of the lattice Boltzmann method [J]. International Journal of Modem Physics C, 1993, 4 (2): 409-415.
  • 4CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30( 1 ): 329-364.
  • 5SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers [M]. Springer, 2006.
  • 6GAO Y, SHARMA M. A LGA model for fluid flow in heterogeneous porous media [J]. Transport in Porous Media, 1994, 17 ( 1 ): 1-17.
  • 7DARDIS O, MCCLOSKEY J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media [J] Physical Review E, 1998, 57 (4): 4834-4837.
  • 8THORNE D T, SUKOP M C. Lattice Boltzmann model for the Elder problem [J]. Developments in Water Science, 2004, 55: 1549-1557.
  • 9WALSH S D, BURWINKLE H, SAAR M O. A new partial-bouncebaek lattice-Boltzmann method for fluid flow through heterogeneous media [J]. Computers & Geosciences, 2009, 35 (6): 1186-1193.
  • 10YEHYA A, NAJI H, SUKOP M. Simulating flows in multi-layered and spatially-variable permeability media via a new Gray Lattice Boltzmann model [J]. Computers and Geotechnies, 2015, 70 : 150-158.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部