期刊文献+

A study of wavelet transforms applied for fracture identification and fracture density evaluation 被引量:3

小波变换在裂缝识别和裂缝密度评价中的研究(英文)
在线阅读 下载PDF
导出
摘要 Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent. 通过常规测井曲线小波变换来评价裂缝参数是一个较新的研究课题。本文针对火山岩裂缝储层,对常规测井曲线做coif5、bior4.4和db5基小波的小波变换,通过变换后的分解信号与成像测井裂缝密度的对比研究,寻找出与裂缝密度相匹配的基小波,再将常规测井曲线在这个基小波下的分解信号与曲线变化率法相结合建立裂缝指示曲线来识别裂缝发育段,最后通过裂缝指示曲线与成像测井的裂缝密度之间的量化关系来比较准确的评价裂缝密度。将裂缝指示曲线法在松辽盆地南部进行了应用,通过裂缝指示曲线求取的裂缝密度与成像测井的裂缝密度之间的相对误差为0.53。
出处 《Applied Geophysics》 SCIE CSCD 2011年第2期164-169,178,179,共8页 应用地球物理(英文版)
基金 sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001)
关键词 Wavelet transform fracture identification differential curves fracture density 小波变换 裂缝识别 曲线变化率 裂缝密度
  • 相关文献

参考文献15

二级参考文献21

共引文献72

同被引文献42

  • 1颜云辉,杨会林,王成明.金属断口图像的非线性模式识别方法[J].东北大学学报(自然科学版),2004,25(9):884-886. 被引量:5
  • 2MALLAT S. Grouplets [J]. Applied and ComputationalHarmonic Analysis, 2009 , 26(2) : 161-180.
  • 3PEYRfi G. Dynamic texture synthesis with Gouplets[C].MAPMO Workshop on Image Processing,Orleans,France,2008.
  • 4PEYHfi G. Texture synthesis with grouplets [J]. IEEETransactions on Pattern Analysis and Machine Intelli-gence, 2009,32(4) : 733-746.
  • 5MAALOUF A, CARRfi P, AUGEREAU B, et al. In-painting using geometrical Grouplets [C]. 16th EuropeanSignal Processing Conference ( EUSIPCO 2008 ),Lau-sanne ,Switzerland, 2008.
  • 6MAALOUF A, LARABI M CH, Fernandez-MaloigneChristine. A Grouplet-based reduced reference imagequality assessment [C]. International Workshop on Qual-ity of Multimedia Experience ( QoMEx 2009),San Die-go, C A,2009.
  • 7MAALOUF A,LARABI M CH. Grouplet-based color im-age super-resolution[C]. 17th European Signal Process-ing Conference ( EUSIPCO 2009 ), Glasgow,Scotland,2009.
  • 8SAITO T,ISHIKAWA K,UEDA Y,et al. Image denois-ing with hard color-shrinkage and grouplet transform [C].28th Picture Coding Symposium (PCS2010),Nagoya, Ja-pan,2010.
  • 9JIANG W, LOUI A C. Video concept detection by audi-o-visual grouplets [J]. Int. J. Multimed. Info. Retr.,2012, l:223-238.
  • 10YAN J W, WANG ZH X,DAI L Q,et al. Image denois-ing with Grouplet transform [C]. The 2nd IEEE Interna-tional Conference on Advanced Computer Control, Shen-yang ,2010.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部