期刊文献+

基于超群的粒计算理论 被引量:3

Granular Computing Theory Based on Hypergroups
原文传递
导出
摘要 首次将代数中的超群理论应用于粒计算研究之中。首先,引入正规超群和强正规超群的定义,证明了正规超群可由强正规超群生成;然后将粒计算商空间模型(X,f,T)中的T取为超群结构,利用超群同态证明了在模型(X,f,T)中,x与y在同一条路径上当且仅当在商空间模型([X],[f],[T])中,[x]与[y]在同一条路径上;并进一步证明了:若X与Y为超群同态的,则它们导出的商空间也是超群同态的。其次,我们研究了正规超群与可能性理论中的备域、超群与Paw lak近似空间及超群与拓扑空间的联系。指出:(1)强正规超群与备域是等价的;(2)强正规超群与Paw lak近似空间是等价的;(3)利用超群可定义集合的上、下近似,并利用集合的上、下近似刻画了超群同态;(4)强正规超群可由拓扑空间生成,正规超群可由拓扑空间生成的强正规超群生成;(5)可能性理论中的备域与Paw lak近似空间是等价的,且备域恰好是近似空间中所有可定义集合的全体。我们的研究表明:可能性理论中的备域与Paw lak的近似空间可利用正规超群来刻画。因此超群理论可用于粒计算的研究中。 This paper is first article to apply the theory of hypergroup in algebra into the research of granular computing.Firstly,we introduce the definitions of normal hypergroup and strong normal hypergroup,and show that each normal hypergroup can be generated by a strong normal hypergroup.Then by choosing T in the quotient space theory model(X,f,T) of granular computing as hypergroup structure,we prove that x and y are in the same path in the model(X,f,T) if and only if [x] and [y] are in the same path in quotient space model(,[T]) by the use of homomorphism of hypergroup;Further,we prove that if X and Y are homomorphism of hypergroup,then the quotient space induced by them are also homomorphism.Secondly,we develop the relationships between normal hypergroup and some theories such as ample field in possibility theory,Pawlak approximation space and topological space.We point out that(1) Strong normal hypergroup and ample field are equivalent;(2) Strong normal hypergroup and Pawlak approximation space are equivalent;(3) The upper and lower approximations of sets can be defined by hypergroup,and the homomorphism of hypergroup can be described by the upper and lower approximations;(4) Strong normal hypergroup can be generated by topological space,and normal hypergroup can be generated by the strong normal hypergroup generated by topological space;(5) The ample field in possibility theory and Pawlak approximation space are equivalent,and the ample field is just the set of all well defined sets.Hence,the theory of hypergroup can be applied to the research of granular computing.
出处 《模糊系统与数学》 CSCD 北大核心 2011年第3期133-142,共10页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(90818025 60774049) 国家863高技术计划项目(2006AA04Z163)
关键词 粒计算 商空间 超群 超群同态 备域 Pawlak近似空间 Granular Computing Quotient Space Hypergroup Homomorphism Ample Field Pawlak Approximation Space
  • 相关文献

参考文献19

  • 1Zadeh L A. Fuzzy Sets and information granularity[C]//Gupta M M, Ragade R K, Yagers R R. Advances in fuzzy sets theory and applications. Amsterdam : North-Holland Publishing, 1979 : 3- 18.
  • 2Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic [J]. Fuzzy Sets and Systems,1997,19:111-127.
  • 3Lin T Y. Granular computing on binary relations I : data mining and neighborhood Systems, I .. rough set representations and belief functions, rough sets in knowledge discovery[M]. Physica-verlag,1998:107-140.
  • 4Lin T Y. Granular computing: fuzzy logic and rough sets. Computing with words in information/intelligent systems [M]. Physica-verlag, 1999.
  • 5Lin T Y. Data mining and machine oriented modeling: a granular computing approach[J]. Journal of Applied Intelligence, 2003,13 (2) : 113 - 124.
  • 6Yao Y Y. Relation interpretations of neighborhood operators and rough set approximation operators[J]. Information Sciences,1998,111:239-259.
  • 7张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:207
  • 8Zadeh L A..Fuzzy logic = computing with words[J]. IEEE Trans on Fuzzy Systems, 1996, (4):103- 11.
  • 9ZadehLA(阮达,黄崇福编译).模糊集与模糊信息粒理论[M].北京:北京师范大学出版社,2000:295-309.
  • 10Zadeh L A. Toward a generalized theory of uncertainty (GTU) - an outline[J]. Information Sciences,2005,172: 1-40.

二级参考文献3

共引文献305

同被引文献98

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部