期刊文献+

粒子滤波在轴承故障振动信号降噪中的应用 被引量:7

Bearing Fault Vibration Signal Noise Reduction Based on Particle Filter
在线阅读 下载PDF
导出
摘要 针对轴承故障信号的降噪处理,研究了粒子滤波方法和它在信号降噪中的应用。首先建立轴承故障振动信号的数学模型,将其作为粒子滤波的状态方程;然后提取背景噪声,将其和状态信号一起作为观测信号,得到观测方程,据此对原始真实信号进行估计,得到降噪后的信号,并通过仿真分析可知降噪前后的信噪比有明显的提高;最后将粒子滤波降噪思想用于所采集的实验室传动箱轴承故障振动信号的降噪处理,获得了较好的噪降效果。 Aimed at bearing fault signal noise reduction processing,this paper studies the particle filter method and its application in signal noise reduction.Firstly,the mathematical model for bearing fault vibration signals is established and it is considered as the state equation of the particle filter.Then, extracting the background noise,the noise signal with the state signal as an observation signal,an observation equation is obtained.The original real signal is estimated,and the obtained estimate signal is the de-noising signal.Through the simulation analysis,the signal-to-noise ratio is improved before and after noise reduction.Finally,the particle filter for the noise reduction is used for bearing fault vibration signal noise reduction processing in laboratory transmission boxes,thus obtaining same good effect of the noise reduction.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2011年第3期354-356,398-399,共3页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50875247) 山西省自然科学基金资助项目(编号:2007011070)
关键词 轴承故障 粒子滤波 振动信号 降噪 bearing faults particle filter vibration signal noise reduction
  • 相关文献

参考文献5

  • 1Gordon N J, Salmond D J, Smith A F M. Novel ap- proach to nonlinear/non-gaussian bayesian state esti- mation[J]. IEEE Proceeding-F, 1993, 140(2): 107- 111.
  • 2Doucet A, Gordon N. Sequential monte carlo methods in practiee[M]. New York: Springer-Verlag, 2001.
  • 3Michael I, Andrew B. Condensation conditional densi- ty propagation for visual tracking [J]. International Journal Computer Vision, 1998, 29(1) : 5-28.
  • 4Doucet A, Gordon N, Krishnamurthy V. Particle fil- ters for state estimation of jump Markov linear sys- tems[J]. IEEE Transactions on Signal Processing, 2001,49(3): 613-624.
  • 5高羽,张建秋.小波变换域估计观测噪声方差的Kalman滤波算法及其在数据融合中的应用[J].电子学报,2007,35(1):108-111. 被引量:18

二级参考文献9

  • 1邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 2库索夫可夫H T.控制系统的最优滤波和辨识方法[M].章燕申译.北京:国防工业出版社,1984:173-177.
  • 3Y Bar-Shalom,X Li.Multitarget-Multisensor Tracking:Principles and Techniques[M].Storrs,CT,YBS Publishing,1995.
  • 4Fitzgerald RJ.Divergence of the kalman filter[J].IEEE Trans on Automatic Control,1971,16(6):736-747.
  • 5Pearson J,Goodall R,Eastham M,MacLeod C.Investigation of kalman filter divergence using robust stability techniques[A].Proceedings of the 36th IEEE Conference on Decision and Control[C].San Diego,1997.4892-4893.
  • 6S Mallat.A Wavelet Tour of Signal Processing[M].San Diego,CA:Academic,1998.
  • 7Lijun Xu,Jian Qiu Zhang,Yong Yan.A Wavelet-based multisensor data fusion algorithm[J].IEEE Transactions on Instrumentation and Measurement,2004,53(6):1539-1545.
  • 8Eric W Weisstein.Weierstrass Approximation Theorem.[OL].http://mathworld.wolfram.com/ WeierstrassApproximationTheorem.html.
  • 9D Donoho,I Johnstone.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81(3):425-455.

共引文献17

同被引文献48

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部