期刊文献+

刚体卫星姿态的有限时间控制 被引量:13

Finite Time Stabilization Method for the Rigid Spacecraft Attitude Control
在线阅读 下载PDF
导出
摘要 针对刚体卫星的姿态控制问题,设计了不存在和存在扰动力矩两种条件下的有限时间状态反馈控制律.对于无扰动力矩情形,基于非线性齐次系统性质,设计了一种便于工程实践性的连续、非奇异的比例微分形式控制算法,保证姿态闭环系统有限时间收敛到零点,而且此算法能直接推广到卫星姿态跟踪问题.对于存在扰动力矩的情形,基于有限时间Lyapunov定理设计的连续、非奇异的控制力矩保证卫星姿态和角速度在有限时间内收敛到原点附近的邻域.当外扰力矩为零时,此控制律使闭环系统状态有限时间收敛到平衡点.数学仿真结果说明了提出的控制算法有效. For the rigid spacecraft attitude control problem,a method for designing the finite time controllers is proposed in this paper controllers are analyzed in the absence of disturbance and in the presence of disturbance.For the first case,based on the property of the nonlinear homogeneous system,a continuous and non-singular proportional-derivative(PD) controller is proposed to achieve the finite time convergence of the closed-loop attitude control system,and can be extended to the spacecraft attitude tracking problem.For the second case,we design a new continuous and non-singular controller is design on the basis of Lyapunov finite time theorem,such that the spacecraft attitude and angular velocity converge to a small neighborhood of the equilibrium point.If the disturbance vanishes,all the states will converge to the origin eventually.Last,numerical simulation is conducted to demonstrate the effectiveness of our proposed controller.
出处 《空间控制技术与应用》 2011年第3期1-8,共8页 Aerospace Control and Application
基金 CAST基金资助项目(CAST201105)
关键词 卫星姿态控制 有限时间稳定 扰动力矩 非奇异 spacecraft attitude control finite time control disturbances torque non-singular
  • 相关文献

参考文献25

  • 1Wen J T, Kreutz-Delgado K. The attitude control problem [J]. IEEE Transactions on Automatic Control, 1991, 36 (10) : 1148-1162.
  • 2Chen Y P, Lo S C. Siliding-mode controller design for spacecraft attitude tracking maneuvers[ J]. IEEE Transactions on Aerospacecraft and Electronic Systems, 1993, 29 (4) : 1328-1333.
  • 3Ahmed J, Coppola V T. Adaptive asymptotic tracking of spacecraft attitude motion with inertial matrix identification[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (5): 684-691.
  • 4Lizarralde F, Wen J T. Attitude control without angular velocity measurement: a passivity approach [ J ]. IEEE Transactions on Automatic Control, 1996, 41 (3) : 468-472.
  • 5Tsiotras P. Further passivity results for the attitude control problem[J]. IEEE Transactions on Automatic Control, 1998, 43 (11): 1597-1600.
  • 6Tayebi A. Unit quaternion-based output feedback for the attitude tracking problem[ J]. IEEE Transactions on Automatic Control, 2008, 53 (6) : 1516-1520.
  • 7Cheng Z Y, Huang J. Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control [J]. IEEE Transactions on Automatic Control, 2009, 54 (3) : 600-605.
  • 8Lawton J R, Bread R W. Synchronized multiple spacecraft rotations[J]. Automatica, 2002, 38 (8): 1359-1364.
  • 9Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[ J]. SIAM Journal of Control Optimal, 2000, 38 (3): 751-766.
  • 10Bhat S P, Bernstein D S. Finite-time stability of homogeneous systems [ C ]. American Control Conference, New Mexico, USA, June, 1997, 2513-2514.

同被引文献122

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部