摘要
在实Hausdorff拓扑线性空间中研究了含参弱向量均衡问题的适定性.证明了在适当条件下由近似网定义的含参适定性等价于近似解映射的上半连续性,并给出了所研究问题各种适定的充分性条件.
It studied the well-posedness for parametric weak vector equilibrium problems in real Hausdorff topological vector spaces.It prooved that under suitable conditions the well-posedness defined by approximating solution nets is equivalent to the upper semicontinuity of the solution mapping and gave sufficient conditions to various kinds of well-posedness.
出处
《应用泛函分析学报》
CSCD
2011年第2期172-179,共8页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(11061023)
江西自然科学基金(2008GZS0072)
江西省研究生创新专项资金自筹项目(YC09B004)
关键词
含参弱向量均衡问题
适定性
解映射
上半连续性
parametric weak vector equilibrium problems
well-posedness
solution mapping
upper semicontinuity