期刊文献+

喉部面积比对喷射器性能的影响分析 被引量:5

The influence of throat area ratio on the performance of the ejector
在线阅读 下载PDF
导出
摘要 利用真实气体的二维轴对称,模型对喷射式空调系统的喷射器进行CFD计算,为了研究喷射器的喉部面积比对喷射器性能的影响。在计算工况条件下,存在一最优的喉部面积比AR*(5.76),使得此时的喷射系数和系统COP最大。当AR<AR*时,喷射系数和COP随着AR的增加而增加;当AR>AR*时,喷射器出现倒流现象,而且随着AR的增加,倒流加剧。计算还得到了不同喉部面积比下的临界背压值。喉部面积比越大,临界背压越低,喉部面积比越小,临界背压越高。但是喉部面积比如果小于一定的数值(3.41),如何降低背压都不可能使喷射器工作。利用CFD的优势分析了造成发生变化的原因:喉部面积比的变化引起激波的变化,激波的变化导致工作流流体流量和引射流体流量的变化。 A 2D axisymmetric model used by real gas was developed to calculate CFD of ejector in air conditioning system and evaluate the influence of throat area ratio (AR) on ejector performance. There was an optimum ejector throat area ratio AR^* (5.76) with the giving calculation operating condition and the other geometry parameters. When AR =AR^* , the entrainment ratio reached the maximum value. When AR 〉 AR ^*, the refrigerant flow backward the entrainment inlet, and with the increase of the AR, the backward flow increased sharply. When AR 〈 AR^ * , the entrainment ratio increased with the increase of AR. The critical back pressures (CBP) on the different AR had obtained. When AR was larger, CBP was lower; AR was smaller, CBP was higher. When AR 〈3.41, ejector could not work even if the back pressure was super low. The change of the primary and secondary mass flow were caused by the change of shock wave. The change of shock wave was the result of the change of nozzle diameter.
出处 《低温与超导》 CAS CSCD 北大核心 2011年第6期68-71,共4页 Cryogenics and Superconductivity
基金 上海高校选拔培养优秀青年教师科研专项基金(ssc09010) 上海市教育委员会重点学科建设项目(J50704)
关键词 工程热物理 蒸汽喷射器 数值模拟 制冷系统 COP Engineering thermophysics, Vapor ejector, Numerical simulation, Cooling system, COP
  • 相关文献

参考文献8

  • 1Kanjanapon Chunnanond,Satha Aphornratana. Ejectors: applications in refrigeration technology [ J ].Renewable and sustainable energy reviews, 2004,8 ( 2 ) : 129 - 155.
  • 2Wimolsiri Pridasawas : Solar - driven refrigeration system with focus on the ejector cycle [ D ] : [ Ph. d. thesis ]. Royal Institute of Technology, KTH, 2006.
  • 3Yu Jianlin, Chen Hua, Ren Yunfeng, et al. A new ejector refrigeration system with an additional jet pump [ J ]. Int. J. Refrig. , 2006,26(2 -3) :312 -319.
  • 4Rogdakis E D, Alexis G K. Investigation of ejector design at optimum operating condition [ J ]. Energy Conversion & Management, 2000,41 (17) : 1841 - 1849.
  • 5Aidoun Z, Ouzzane M. The effect of operating conditions on the performance of a supersonic ejector for refrigeration[J]. Int. J. Refrig., 2004,27(8):974-984.
  • 6Riffat S B, Gan G,Smith S. Computational fluid dynamics applied to ejectors heat pumps [ J ]. Applied thermal engineering, 1996,16(4) :291 - 297.
  • 7Rusly E, Aye Lu, Charters W W S, et al. CFD analysis of ejector in a combined ejector cooling system[ J ]. Int. J. Refrig. , 2005,28 (7) : 1092 - 1101.
  • 8王永红,陶乐仁,王金锋,郑志皋,黄理浩,张庆钢.喷射式空调系统的实验与数值模拟研究[J].低温与超导,2010,38(5):44-46. 被引量:2

二级参考文献5

  • 1Kanjanapon Chunnanond,Satha Aphornratana.Ejectors:applications in refrigeration technology[J].Renewable and sustainable energy reviews,2004(8):129-155.
  • 2Wimolsiri Pridasawas:Ph.d.thesis,Royal Institute of Technology,KTH,2006.
  • 3Yu Jianlin,Chen Hua,Ren Yunfeng,et al.A new ejector refrigeration system with an additional jet pump[J].Int.J.Refrig.,2006,26:312-319.
  • 4Huang B J,Chang J M,Wang C P,et al.A 1-D analysis of ejector performance[J].Int.Refrig.,1999,22:354-364.
  • 5Yapici R,Yetisen C C.Experimental study on ejector refrigeration system powered by low grade heat[J].Energy Conversion and Management,2007,48:1560-1568.

共引文献1

同被引文献28

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部