期刊文献+

一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法 被引量:87

An Algorithm Based on Haar-Like Features and Improved AdaBoost Classifier for Vehicle Recognition
在线阅读 下载PDF
导出
摘要 提出一种基于类haar特征和改进AdaBoost分类器的车辆图像识别算法,以解决当前基于SVM分类器或级联分类器存在的分类识别性能不足以及传统基于AdaBoost算法的训练所需时间过长的问题.首先,基于积分图提取图像的扩展类haar特征,然后对所提取的海量类haar特征应用改进的AdaBoost分类器训练方法进行特征选择及分类器训练,最后利用所选择的特征信息及训练得到的分类器进行两类分类识别.实验结果表明,文中方法无论是在识别性能还是训练所需时间方面均明显优于传统方法,具有较好的应用前景. An algorithm based on Haar-like features and AdaBoost classifier for vehicle recognition is proposed to solve the problem of poor recognition performance based on SVM(Support Vector Machines) classifier and cascaded AdaBoost classifier as well as the problem of much time consumed for training traditional AdaBoost.At first,the extended Haar-like features are extracted using integral image method,then a small number of critical features from a very large set of Haar-like features are selected while training AdaBoost,finally two classes classification is performed using the AdaBoost classifier and the selected features.Experimental results demonstrate that the proposed approaches has better performance both in recognition and time consuming than traditional methods,and shows promising perspective.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1121-1126,共6页 Acta Electronica Sinica
基金 国家863高技术研究发展计划项目(No.2006AA1Z221) 国家自然科学基金(No.60702076) 南京信息工程大学科研基金资助项目(No.20100394) 江苏高校优势学科建设工程资助项目
关键词 车辆识别 类HAAR特征 ADABOOST算法 vehicle recognition haar-like features AdaBoost algorithm
  • 相关文献

参考文献15

  • 1Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 2Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 3Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 4Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 5Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 6Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 7田广,戚飞虎.移动摄像机环境下基于特征变换和SVM的分级行人检测算法[J].电子学报,2008,36(5):1024-1028. 被引量:18
  • 8闫瑞,曹先彬,李凯.面向短文本的动态组合分类算法[J].电子学报,2009,37(5):1019-1024. 被引量:32
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.
  • 10Viola P, Jones M. Robust real-time face detection[J].International Journal of Computer Vision, Published by Springer, 2004,57(2) :137 - 154.

二级参考文献31

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Bengel J,Gauch S,Mittur E,Vijayaraghavan R.Chattrack:Chat room topic detection using classification[A].Proceedings of the 2nd Symposium on Intelligence and Security Informatics[C].Berlin Germany:Springer-Verlag,2004.266-277.
  • 3Haichao Dongg,Siu Cheung Hui,Yulan He.Sturctural analysis of chat messages for topic detection[J].Online InformationReview,2006,5(30):496-516.
  • 4Yang Y,Liu X.A re-examination of text categorization methods[A].Proceedings of the 22th Annual Interational ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York,USA:ACM,1999.42-49.
  • 5Fried N,Geiger D,Goldszmidt M.Bayesian network classifiers[J].Machine Learning,1997,29(2-3):131-163.
  • 6Vapnic V.The nature of statistical learning theory[M].New York:Springer,1995.138-170.
  • 7Joachims T.Text categorization with support vector machines:Learning with many relevant features[A].Proceedings of the 10th European Conference on Machine Learning[C].Berlin Gremany:Springer-Verlag,1998.137-142.
  • 8Schapire R E,Singer Y.Boostexter:A boosting-based system for text categorization[J].Machine Learning,2000.39(2-3):135-168.
  • 9Kim Y H,Hahn S Y,Zhang B T.Text filtering by boosting naive bayes classifiers[A].Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York,USA:ACM,2000.168-175.
  • 10James G Shanahan.Boosting support vector machines for text classification through parameter-free threshold relaxation[A].Proceedings of the 12th international conference on Information and knowledge management[C].New York,USA:ACM,2003.247-254.

共引文献48

同被引文献730

引证文献87

二级引证文献526

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部