摘要
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.
基金
Project supported by the National Natural Science Foundation of China (Grant No. 10775025)
the Scientific Research Fund of Liaoning Provincial Education Department for Colleges and Universities (Grant No. 2008T229)
the Program for New Century Excellent Talents in University (Grant No. NCET-08-0073)