期刊文献+

The synchronization of a fractional order hyperchaotic system based on passive control 被引量:4

The synchronization of a fractional order hyperchaotic system based on passive control
在线阅读 下载PDF
导出
摘要 This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization between two fractional order hyperchaotic systems under different initial conditions is realized, on the basis of the stability theorem for fractional order systems. Numerical simulations and circuitry simulations are presented to verify the analytical results. This paper investigates the synchronization of a fractional order hyperchaotic system using passive control. A passive controller is designed, based on the properties of a passive system. Then the synchronization between two fractional order hyperchaotic systems under different initial conditions is realized, on the basis of the stability theorem for fractional order systems. Numerical simulations and circuitry simulations are presented to verify the analytical results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期100-106,共7页 中国物理B(英文版)
关键词 fractional order hyperchaos passive control numerical simulation circuitry simulation fractional order hyperchaos, passive control, numerical simulation, circuitry simulation
  • 相关文献

参考文献33

  • 1Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. CAS-I 42 485.
  • 2Wu Z M, Lu J G and Xie J Y 2006 Chin. Phys. 15 1201.
  • 3Li C G and Chen C 2004 Physica A 341 55.
  • 4Ahmad W M and Sprott J C 2003 Chaos, Solitons and Fractals 16 339.
  • 5Ahmad W M and Harb W M 2003 Chaos, Solitons and Fractals 18 693.
  • 6Li C P and Peng G J 2004 Chaos, Soli~ons and Fractals 22 443.
  • 7Lu J G and Chen G R 2006 Chaos, Solitons and Fractals 27 685.
  • 8Tavazoei M S and Haeri M 2007 Phys. Lett. A 367 102.
  • 9Liu L, Liu C X and Zhang Y B 2009 Int. J. Bifurc. Chaos 19 2473.
  • 10Yu Y G and Li H X 2008 Physica A 387 1393.

同被引文献31

  • 1高心,虞厥邦.Chaos and chaotic control in a fractional-order electronic oscillator[J].Chinese Physics B,2005,14(5):908-913. 被引量:14
  • 2张成芬,高金峰,徐磊.分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J].物理学报,2007,56(9):5124-5130. 被引量:33
  • 3Tiegang Gao,Guanrong Chen,Zengqiang Chen,Shijian Cang.??The generation and circuit implementation of a new hyper-chaos based upon Lorenz system(J)Physics Letters A . 2006 (1)
  • 4Yongguang Yu,Han-Xiong Li.??The synchronization of fractional-order R?ssler hyperchaotic systems(J)Physica A: Statistical Mechanics and its Applications . 2007 (5)
  • 5Varsha Daftardar-Gejji,Sachin Bhalekar.??Chaos in fractional ordered Liu system(J)Computers and Mathematics with Applications . 2009 (3)
  • 6Caputo M.Linear model of dissipation whose Q is almost frequency independent-II. Geophysical Journal . 1967
  • 7Chunguang Li,Guanrong Chen.Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals . 2004
  • 8Ge S S,Wang C,Lee T H.Adaptive backstepping control of a class of chaotic systems. International Journal of Bifurcation and Chaos . 2000
  • 9A. S. HEGAZI,H. N. AGIZA,M. M. EL-DESSOKY.ADAPTIVE SYNCHRONIZATION FOR R?SSLER AND CHUA\’S CIRCUIT SYSTEMS. International Journal of Bifurcation and Chaos . 2002
  • 10C.G.Li,X.F.Liao,J.B.Yu.Synchronization of fractional order chaotic systems. Physical Review . 2003

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部