期刊文献+

一种基于贪心EM的改进预测算法

EM-based Greedy Algorithm for Improved Forecasting
在线阅读 下载PDF
导出
摘要 本文主要研究了Motif预测算法,在贪心EM预测算法基础上进行分析优化,并形成新的预测方法。工作重点是在参数的初始化,对参数模型的重新划分并引入Kd-树的层次聚类的方法,建立新的PKG算法。预测结果表明,在预测较大数据集方面新算法有一定的优势,尤其是对同一物种的序列预测具有更强的搜索和分类能力,在没有影响时间复杂度的前提下显著的提高了搜索的效率。 Motif finding algorithm was studied as the key point in this paper.Optimization was based on the EM-baced greedy algorithm and then predicting method was established.Parameters initialization,the re-division of the parameter model and introduction of Kd-tree hierarchical clustering method,and the establishment of PKG algorithm were paid more attention in this paper.The results indicated PKG algorithm has some advantages in predicting motifs in large data sets,especially in the prediction of sequences in the same species.With advantages in sequence search and classification capabilities,the search efficiency was improved by PKG algorithm significantly without affecting complexity in the time.
作者 张斐
出处 《价值工程》 2011年第17期141-142,共2页 Value Engineering
基金 国家自然科学基金资助项目(30600329)
关键词 Motif预测 贪心EM算法 PKG算法 Motif finding EM-based greedy algorithm PKG algorithm
  • 相关文献

参考文献5

  • 1张斐,谭军,谢竞博.基于不同算法的Motif预测比较分析与优化[J].计算机工程,2009,35(22):94-96. 被引量:6
  • 2王维彬,钟润添.一种基于贪心EM算法学习GMM的聚类算法[J].计算机仿真,2007,24(2):65-68. 被引量:15
  • 3M Tompa, N Li, T L Bailey, et al.assessing computational tools for the discovery of transcription factor binding sites [J].Nat Biotechnol,2005,23:137- 144.
  • 4T L Bailey. Discovering Motifs in DNA and protein sequences:the appoximate common substring problem [D].University of California, San Diego, 1995.
  • 5T L Bailey,C Elkan.Unsupervised learning of multiple Motifs in biopolymers using expectation maximization[J].Machine Learning,1995,21:51-83.

二级参考文献12

  • 1Thakurta D G Computational Identification of Transcriptional Regulatory Elements in DNA Sequence[J]. Nucleic Acids Research, 2006, 34(12), 3585-3598.
  • 2Martin T, Li Nan, Timothy L B, et al. Assessing Computational Tools for the Discovery of Transc_ription Factor Bingding Sites[J].Nature Biotechnology, 2005, 23(1): 137-144.
  • 3Obayshi T, Kinoshita K, Nakai K, et al. ATTED-II: A Database of Co-expressed Genes and CIS Elements for Identifying Co-regulated Gene Groups in Arabidopsis[J]. Nucleic Acids Research, 2007, 35(Database Issue): 863-869.
  • 4Timothy L B, Nadya W, Chris M, et al. MEME: Discovering and Analyzing DNA and Protein Sequence Motifs[J]. Nucleic Acids Research, 2006, 34(Web Server Issue): 369-373.
  • 5M Kearns, Y Mansour, A Y Ng. An information - theoretic analysis of hard and soft assignment methods for clustering[C ].Proceedings of the NATO Advanced Study Institute on Learning in graphical models, 1998. 495 - 520.
  • 6C Fraley, A E Rafiery. How Many Clusters Which Clustering Method Answers Via Model - Based Cluster Analysis[ J]. The Computer Journal, 1998,41 (8) :578 - 588.
  • 7V NIKOS, L ARISTIDIS. A Greedy EM Algorithm for Gaussian Mixture Learning[ J]. Neural Processing Letters, 2002,15 (1) :77 - 87.
  • 8J Q Li, A R Barron. Mixture density estimation[J]. Advances in Neural Information Processing Systems. 2000, 12:279 -285.
  • 9B Minaei - Bidgoli, A Topchy, W Punch. A Comparison of Resampling Methods for Clustering Ensembles[C]. IC - AI 2004. 939 - 945.
  • 10G J McLachlan, D Peel. Finite Mixture Models[ M]. US, New York : Wiley - Interscience, 2000.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部