摘要
将s级2s阶的辛Runnge-Kutta方法用于电力系统暂态稳定性计算,利用矩阵分裂技巧以及矩阵求逆运算的松弛方法,导出了一种新的暂态稳定性并行计算方法,具有较好的时间并行特性和超线性收敛性。利用IEEE 145节点系统,对导出的并行算法进行了仿真测试和评估。仿真测试结果表明,所提出的并行算法具有很好的收敛性,有效地解决了时间并行度与收敛性之间的矛盾,可以获得较高的加速比和很好的并行计算效率。
In this paper,the s-stage 2s-order symplectic Runge-Kutta method is adopted for numerical calculation of power system transient stability.By an artful splitting of Jacobian matrix and using relaxation technique of matrix inverse,a new parallel algorithm for transient stability computation has been derived.The proposed algorithm is of complete parallel-in-time,and has super-linear convergence rate.For test,IEEE 145-bus power system is used,and through numerical simulation the proposed algorithm has been compared with the conventional parallel-in-time Newton approach.The test results show that the proposed algorithm has good convergence rate, can resolve the contradiction between the parallel-in-time degree and the convergence rate, and can obtain high speedup and parallel calculation efficiency.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2011年第11期22-26,32,共6页
Power System Protection and Control
关键词
暂态稳定性
辛几何方法
并行算法
矩阵分裂
松弛牛顿法
transient stability
symplectic geometry algorithm
parallel algorithm
matrix splitting
relaxed Newton method