期刊文献+

支持向量机在混凝土强度预测中的应用研究 被引量:5

Study of Support Vector Machine and Its Application in Concrete Strength Prediction
在线阅读 下载PDF
导出
摘要 支持向量机是基于统计学习理论框架下的一种新的通用机器学习方法.文中提出了基于支持向量机的混凝土强度预测方法,并在MATLAB中编制了相应的支持向量机程序,建立了相应的混凝土强度预测模型.以实例数据为学习样本和测试样本讨论了基于支持向量机的混凝土强度预测方法及可行性.研究表明支持向量机可以较好地表达混凝土强度与其影响因素之间的非线性映射关系.用支持向量机来预测混凝土强度是可行的,它为预测混凝土强度提供了一种新的方法. SVM is a new machine learning method based on the statistical learning theory.This paper proposed forecasting methods of concrete strength based on SVM,and the corresponding SVM program and concrete strength prediction model has been established by MATLAB.The instance data for learning samples and test samples were used to discuss forecasting methods of concrete strength and feasibility based on SVM.The results indicate that it is able to express the nonlinear mapping relation between the strength of concrete and its influence factors better.Using SVM to predict the strength of concrete is feasible.It will provide a new method to predict concrete strength.
出处 《南华大学学报(自然科学版)》 2011年第1期18-22,共5页 Journal of University of South China:Science and Technology
关键词 混凝土强度 支持向量机 预测 参数分析 concrete strength support vector machine(SVM) prediction parameter analysis
  • 相关文献

参考文献6

二级参考文献15

  • 1刘开云,乔春生,田盛丰,滕文彦.边坡角设计的支持向量机建模与精度影响因素研究[J].岩石力学与工程学报,2005,24(2):328-335. 被引量:7
  • 2夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 3冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 4[2]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer Verlag,1995
  • 5[4]Steve R Gunn.Support Vector Machines for Classification and Regression.England:University of Southampton,1998
  • 6Wang Dehui, Chen Zhaoyuan, On prediction of compressive strength of mortars with ternary blends of cement, GGBFS and fly ash, Cement and Concrete Research, 1997, 27 (4) : 487-493.
  • 7Kasperkiewicz, J; Racz, J; Dubrawski, A, HPC strength prediction using artificial neural network, Journal of Computing in Civil Engineering, 1995, 9 (4) : 279-284.
  • 8Lai, S ; Sen-a, M, Concrete strength prediction by means of neural network, Construction and Building Materials,1997, 11 (2): 93-98.
  • 9Wang Ji-Zong, Ni Hong-Guang, He Jin - Yun, The application of automatic acquisition of knowledge to mix design of concrete, Cement and Concrete Research, 1999, 29 (12):1875-1880.
  • 10Vladimir N Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献118

同被引文献25

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部