摘要
通过分析神经网络理论和模糊度量方法的特点,提出基于神经网络预测和模糊度量方法的故障再融合诊断方法。该方法采用多个观测数据及主客观相结合的诊断方法,实现方法间的互补融合诊断,更全面、客观地辨识故障,提高故障定位能力,并给出一个液压设备故障诊断实例验证了该方法的有效性。
Traits of neural network theory and fuzzy measurement method are discussed.A method of the further fusion diagnosis using neural network and fuzzy measurement is proposed.The method uses observational data,integrates diagnosis methods with subjective and impersonal information,which can realize the complementary fusion diagnosis,identify fault more comprehensive and objective,and efficiently improve the fault location capability.A hydraulic equipment fault diagnosis example proves the effectiveness of this method.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第8期222-224,共3页
Computer Engineering
基金
国家自然科学基金资助面上项目(50675235)
重庆工商大学青年基金资助项目(0852015)
关键词
神经网络预测
模糊度量
D—S证据理论
再融合诊断
隶属度函数
neural network prediction; fuzzy measurement; D-S evidence theory; further fusion diagnosis; membership function;